US009392022B2

a2 United States Patent

Frascadore et al.

US 9,392,022 B2
Jul. 12, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

METHODS AND APPARATUS TO MEASURE
COMPLIANCE OF A VIRTUAL COMPUTING
ENVIRONMENT

Applicant: VMware, Inc., Palo Alto, CA (US)

Inventors: Gregory A. Frascadore, Colorado
Springs, CO (US); Robert Helander,
Colorado Springs, CO (US); James
Sullivan, Colorado Springs, CO (US);
Rebecca Smith, Peyton, CO (US)

Assignee: VMware, Inc., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/069,257

Filed: Oct. 31, 2013

Prior Publication Data
US 2014/0331276 Al Nov. 6, 2014

Related U.S. Application Data

Provisional application No. 61/819,462, filed on May
3,2013.

Int. Cl1.

HO4L 29/06 (2006.01)

GO6F 21/00 (2013.01)

GO6F 9/455 (2006.01)

GO6F 21/57 (2013.01)

U.S. CL

CPC HO04L 63/20 (2013.01); GOGF 9/45558

(2013.01); GOGF 21/00 (2013.01); GO6F
21/577 (2013.01); HO4L 63/104 (2013.01);
HO4L 63/1433 (2013.01); GO6F 2009/45591
(2013.01)
Field of Classification Search

CPC . GOG6F 21/57; GOGF 21/577; HO4L 29/06904;
HOA4L 63/1433

See application file for complete search history.

1004
“

(56) References Cited
U.S. PATENT DOCUMENTS
7,369,912 B2 5/2008 Sherriff et al.
7,587,718 Bl 9/2009 Mincarelli et al.
8,024,733 B2 9/2011 Hambrick et al.
9,110,695 Bl 8/2015 Bentet al.
2002/0178206 Al 11/2002 Smith
2005/0008001 Al 1/2005 Williams et al.
2007/0101331 Al 5/2007 Krebs
2007/0143851 Al* 6/2007 Nicodemusetal. 726/25
(Continued)
OTHER PUBLICATIONS

Wikipedia NPL obtained from Wikipedia.com on Mar. 12, 2015.*
(Continued)

Primary Examiner — Tri Tran

57 ABSTRACT

Methods, apparatus, systems and articles of manufacture are
disclosed to measure compliance of a virtual computing envi-
ronment. An example method disclosed herein includes
determining, with a processor, a maximum surprisal value of
apolicy to be enforced on a computing resource in a comput-
ing environment, the maximum surprisal value correspond-
ing to a probability of the computing resource being in-com-
pliance with the policy without testing the computing
resource with respect to the policy, determining a current
surprisal value of the computing resource with respect to the
policy based on knowledge of at least one condition of policy
being at least one of satisfied by or inapplicable to the com-
puting resource, and determining a compliance score of the
computing resource with respect to the policy based on the
maximum surprisal value of the policy and the current sur-
prisal value of the computing resource with respect to the
policy.

19 Claims, 28 Drawing Sheets

{ START)

1102—*

DETERMINE MAXIMUM SURPRISAL VALUE AND
SURPRISAL VALUE OF COMPUTING RESOURCE

CALCULATED SU

1104 ﬂ DETERMINE INFORMATION GAIN BASED ON THE |

RPRISAL VALUES

1108

DETERMINE COMPLIANCE SCORE OF THE
COMPUTING RESOURCE

1108

\|
“<

DETERMINE ANOTHER COMPLIANCE
SCORE?

YES

NO

RET!

URN

US 9,392,022 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0071867 Al
2010/0162259 Al
2011/0106737 Al
2012/0173986 Al
2013/0013565 Al
2013/0247133 Al 9/2013 Price et al.

2013/0297799 Al 112013 George et al.

OTHER PUBLICATIONS

3/2008 Pearson et al.

6/2010 Koh et al.

5/2011 Siddalingaprabhu et al.
7/2012 Jung

1/2013 Oza

Tutorvista NPL obtained from Turovista.com on Mar. 12, 2015.*
Bolker et al. NPL 2007, otained from Google on Aug. 14, 2015.*
BeattheMath 2007 NPL; obtained from Beatthemat.com on Aug. 14,
2015.*

Houmb et al—2009 NPL—CVSS is an estimated scoring system;
obtained from Google on Sep. 14, 2015.*

Wikipedia NPL 2016—Information Theory—calculating Surprisal
information.*

Microsoft Developer Network, “FileSystemWatcher Class,” <http://
msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.
aspx>, retrieved Feb. 19, 2014, 11 pages.

Microsoft Developer Network, “Receiving Events at All Times,”
<http://msdn.microsoft.com/en-us/library/aa393014(VS.85).aspx>,
created Oct. 15, 2013, retrieved Feb. 19, 2014, 3 pages.

Hsu, Chih-Wei, Chih-Chung Chang, and Chih-Jen Lin, “A Practical
Guide to Support Vector Classification,” <http://www.csie.ntu.edu.
tw/~cjlin/papers/guide/guide.pdf>, created 2003, updated Apr. 15,
2010, retrieved Feb. 25, 2014, 16 pages.

Chang, Chih-Chung and Chih-Jen Lin, “LIBSVM : a library for
support vector machines,” <http://www.csie.ntu.edu.tw/~cjlin/pa-
pers/libsvm.pdf>, created 2001, updated Mar. 4, 2013, retrieved Feb.
25,2014, 39 pages.

Marvasti, Mazda A., Arnak V. Poghosyan, Ashot N. Harutyunyan,
and Naira M. Grigoryan, “Pattern Detection in Unstructured Data,”
IFIP/IEEE, International Symposium on Integrated Network Man-
agement (IM2013): Experience Session Paper, 2013, retrieved Feb.
25,2014, 6 pages.

United States Patent and Trademark Office, “Non-Final Office
Action”, issued in connection with U.S. Appl. No. 14/069,298, dated
Jul. 17,2015 (18 pages).

United States Patent and Trademark Office, “Non-Final Office
Action,” issued in connection with U.S. Appl. No. 14/069,225, on
Feb. 2, 2016, 28 pages.

United States Patent and Trademark Office, “Non-Final Office
Action,” issued in connection with U.S. Appl. No. 14/069,257 on
Sep. 23, 2015, 27 pages.

Ethan D. Bolker and Maura M. Mast, “Relative and Absolute Change
Percentages,” in non-final Office action issued in connection with
U.S. Appl. No. 14/069,257 on Sep. 23, 2015, 6 pages.

“Two Methods to Calculate Total Average Speed,” Beat the GMAT, in
non-final Office action issued in connection with U.S. Appl. No.
14/069,257 on Sep. 23, 2015, 106 pages.

Siv Hilde Houmb and Virginia N. L. Franqueira, “Estimating ToE
Risk Level using CVSS,” in non-final Office action issued in connec-
tion with U.S. Appl. No. 14/069,257 on Sep. 23, 2015, 8 pages.

* cited by examiner

US 9,392,022 B2

Sheet 1 of 28

Jul. 12, 2016

U.S. Patent

} 'Old

Y

heS

l'

l'
~

NHOALV1d NHOALY1d WHOA1V1d
g0, — NolLYZITVNLYHIA NOILVZITYNLYHIA NOILYZITYNLHIA [N—g01
WA | Al [wa] lwal | wa WA | (Al fwal fwal [wa
oL~ N—o11
........ [[{. f \ — e e _eeee*”
e O}L OLL OLL oL 0L 0L 0L ObL oo
........... oLl Ol
............. AOYNYIN oo™
. HIOVNVIN NOILVZITYNLHIA
pLL *— 00l

US 9,392,022 B2

Sheet 2 of 28

Jul. 12, 2016

U.S. Patent

¢ 'Old
¥ol
oIz YIAYIS ONLLNAWOD 0C
vz — SENNER
oot d¥ | nronnd 80} AHOLOTMIA
ALHVd-adiHL WYO41¥1d NOILYZITYNLHIA ALLOY
— — 90¢
vIT 80z
30OV4YILNI
INTITO JOVAYILNI WHOLLY1d NOILYZITYNLEIA

AdO103410 IAILOY

N:I\

HIOVYNVYIN
NOILVZITVYNLYIA

HIOYNYI
3JONYEITOL
1nv4
Sya _/l [
YIOVNVIA N_ozz TeC
NOILOWA
YIOYNYI N—9zz
ALTIBYVIVAY N 520 07

H3TIOHLNOD SIVIAYIS A3LNgIF1SId

10C

rAY4

JOV443LNI 3Svaviva

20¢
H3TI0HLNOD SS300V d3sN

g1z Nmmnj HIDYNYIW
HOLINOW AHOLNIANI
JONVI1dNOD ANIHOVIN
IVNLYIA
2 SIOYNOSTY
¥3IINQIHOS
MSVL
39901 gez
SOILSILYLS
YIDVYNYIA N— pez
SLINIAT
LSNUVTY [N—o0gz
YIANOISIAONM
WA N-g¢zz 912
HIHNDIANOD H3ATTOHLNOD
WAGNY LSOH N_ ez ~ STOIAYIS
3402

U.S. Patent

Jul. 12, 2016 Sheet 3 of 28 US 9,392,022 B2
COMPLIANCE MONITOR
218
COMPLIANCE COMPLIANCE
ASSESSOR MEASURER
302 304
RESULTS
PRIORITIZER REF)S'R{;TER
306 T

COMPLIANCE DATABASE

308
POLICY RESULTS
DATABASE DATABASE
310 312
SCORES PRIORITY
DATABASE ORDER
DATABASE
14 316

\/

FIG. 3

US 9,392,022 B2

Sheet 4 of 28

Jul. 12, 2016

U.S. Patent

S3aA

¥ "Old

m anN4 v
1 on

CONIJOLINOW FONVITdWNOD JNNILNOD

!

1d0d3d ¥V J1LVvH3INTO

I

S3H00S FONVITdNOD ANV SNOILOV d3SN
1SVd NO d3Svd S1TNS3d LNJWSSFISSY 40 S3ILI-HOIdd ISNOJSTY ANINGT LA

i

(S3101N10d HO) ADITOd ¥ O1 (8)324NOSIY ONILNdWOD FHL 40 FIONIHIHAY
190d3y 1VHL S1TNS3IY INIFWSSISSY 40 SLNINTHNSYIAN FONVITINOD
NO @d3svd (S)30HNO0STIH ONILNAINOD ¥ 40 (S)THOIS ADNVITINOD ANINYTLTA

1

(S310170d HO) ADIT0d V HLIM INIWNOHIANT
ONILNINOD TVNLYIA V 4O (S)304N0SIY ONILNANOD 40 FONVITINOD SSIASSY

Vq

m 18V1S u N 007

U.S. Patent

US 9,392,022 B2

Jul. 12, 2016 Sheet 5 of 28
COMPLIANCE ASSESSOR
302
INVENTORY COMPLIANCE
BUILDER TESTER
502 504
SCOPE TESTER CHECK TESTER
506 508
RESOURCE
EVENTsl\qI(())NITOR DENTIFIER
— 512
BATCH TESTER TIMER
514 516
STALENESS
MONITOR
518

FIG. 5

U.S. Patent Jul. 12, 2016 Sheet 6 of 28 US 9,392,022 B2

600 — (START)

*

‘NO RECEIVED EVENT NOTIFICATION YES
OF ANEWLY GENERATED EVENT?

I \— 602

COMPUTING RESOURCE(S) /604
THAT HAVE NOT BEEN YES IDENTIFY RESOURCE(S)
ASSESSED WITHIN ASSOCIATED WITH EVENT
THRESHOLD DURATION?
\—610
NO
PERFORM BATCH 614
TEST?
* YES 616
612
COLLECT COMPUTING Y
RESOURCE STATES FORALL| | IDENTIFY RESOURCE(S)
COMPUTING RESOURCES ASSOCIATED WITH STALE
INCLUDED IN THE VIRTUAL ASSESSMENTS
COMPUTING ENVIRONMENT

Y

STORE COMPUTING RESOURCE
STATES FOR ALL COMPUTING 618
RESOURCES INCLUDED IN THE a

VIRTUAL COMPUTING
ENVIRONMENT

I 4

! /606

TEST COMPLIANCE OF THE COMPUTING RESOURCES AGAINST A
POLICY (OR POLICIES) ENFORCED IN THE VIRTUAL COMPUTING
ENVIRONMENT

CONTINUE COMPLIANCE \YES
ASSESSMENTS? /

NOi _ 608

FIG. 6 C END)

U.S. Patent Jul. 12, 2016 Sheet 7 of 28 US 9,392,022 B2

C START)
606 N
y
SELECT A COMPUTING RESOURCE TO |~ 702
TEST

+<

RETRIEVE A POLICY INCLUDING ONE OR | _ 70,
MORE RULES TO TEST AGAINST THE
COMPUTING RESOURCE

*4

SELECT A RULE TO TEST AGAINST THE |,— 706
COMPUTING RESOURCE

v

708
NO , COMPUTING RESOURCE WITHIN §_

\ SCOPE OF RULE?
=
NO COMPUTING RESOURCE SATISFY YES
RULE?
GENERATE DEFECT /—714 712ﬂ
AND LOG THE DEFECT LOG RULE SATISFIED
716 *

YES
ANOTHER RULE TO TEST? >

NO l
718
X ANOTHER POLICY TO TEST? N\ YES

NO l
720
ANOTHER COMPUTING RESOURCE '\ YES
TO TEST? J
NO
Y

FIG. 7 C RETURN D)

US 9,392,022 B2

Sheet 8 of 28

Jul. 12, 2016

U.S. Patent

V8 'Old
J=3NTYA/ INI=3dALYLYQ FONYLSNI
WALSASSI-ISIINYNNIVIIOQLISSIS-ISIFNYNLSOHLISSISIS1798=HOMYSIHSISAYMTY LIXTSIY-h=a3nTwA | HOLYI N¥3LLVd = NOILY43d0 ‘NY3LLvd
STINY LianY NN
LIanvinL3) HLvd
{165102:LSL80'8098M LSINAOSTYAO) 103140 #SINAINOSTTIALYAL
T = Y03HO ‘SLSIXTINO™LSYAT ¥ = JONALSIXT MO3HD 6S0ZLSLTaH B098N LSIN A AO) 1S3L P INAINOT LA §¢08
TIYOOTNALSAS M- IWYNNIYAOALIS S- IWVNLSOHLIS S - HOMY=HONY 4~ SAVATY LIX3 ¥~ SNIVLNOD STINY LIANYILIANYIOLY ‘NORIL¥O Wv

$300™

$r9vlI$r9 98Xy = IMTVA | HOLYIN NYLL¥d=NOILY43dO0 3dAL H0SSII0Nd
(2910231 TIHY BO9SN LSINAQDWAD) ALYLS YN
{0.9102:180:13HY 09N LSIN A9 TYAO) LOFG0 JNYNN
ASILYS INON =03HD ‘SLSIXT INO LSVIT LY = JONALSIXT MO3HO (2L9402:LSL1FHY GO9S LSIN ACD-T¥AO) LSAL FWYNN
FUNLHOALIHOYY SIHL HO4 INVAFTIHAI SIHOWY 11879 LYHL MO3HD -NORIILIMO 7
S31NY L18-p8 H04 MIFHO 0 e

1=3MVA/ INI=3dALYLYT FONYLSNI
WALSASSIISIFNYNNIVOALISSISISIFNYNLSOHLISSIS 191z 8=HOMYSIHSISAYMTY LIX3SIv-h=3NTwA | HOLY NYTLLY = NOILYMdO NHILLYd
STINYLIANY FWYNI
LIanvOL3/ HLvd
1065107180 13HY 809N LSIN AODIWAQ) LOFPE0 PSLNTLNOATTI4LXAL
TI¥=03H ‘SLSIXT 3N LSWAT 1 = 3ONILSIXT MOFHO 065107.LSLTIHY 095N LSINAODTYAQ) LS3L PSINAINODTTHLAL w409
TWIOTAALSAS - INVNNIVOALIS S~ IWYNLSOHLIS SHOMY=HOHY 4 SAVMTY'LIX3 Y- SNIVINOO STINY LIANVILIANYIOLY ‘NORELEO—)\

aros

$IV00T

v = INTYA | HOLYI NYLLYd=NOILYY3dO 3dAL H0SSI0Ud
{09102:3LST3HY GO9S LSINAODTYAC) 3LYLS NN
{0.9102:180:13HY 809N LSIN A9 TYAO) L9360 JINYNN
AJSILYS INON = X03HD 'S1SIX3 INO™ LSYAT 1¥ = FONILSIXT MO3HO {0/9107:1SL13HY 809N LSINAQS'TYAO) LS3L JWvNn V208
FANLHIALIHIEY SIHL 404 INVAI3ddl S HOYY L18-CE LYH1 MO3HD ‘NORILRIO W@
S$31NY LI18-2€ 404 HOFHO ¥0 e

V-2
008 I\ @ow@

US 9,392,022 B2

Sheet 9 of 28

Jul. 12, 2016

U.S. Patent

b =3NTYA T INI3dALYLYD FONVLSNI
v=3NTVA/HOLYIN NY3LLYd=NOILYH3d0 :Nd3LLYd
STINY'LIANY -JNYNTI
LI0NV/3L3/ HLvd
- ~ (G8510z:rd0 TIHY G09S LSINAO9TYAQ) 193180 ¥SINILINOOTI4LXAL
T1Y =Y03HD ‘SLSIXT INO LSYT LY = JONILSIXT YD3HD (665107 LSLTIHY BO9SN LSINAOD: TWAO) LSIL ¥SINILNODATALXAL
FIVIOTWILSAS X YM d- HOMLINOIINOISASIOLA! M- SNIYLNOI STINY LIANY/LIANY/LY _zo_m_m_._._mol_ @

$3T¥00 NI LSASSIMHSIYMSId-SIMHOMLINIOINOISASIDLIISIAN:

0208

b =3NTYA T INI-3dALYLYQ -FONYLSNI
SISLSOHIOL/SINlv=3NTWA / HOLYW NYLLYd=NOILY4dO N3 LLYd
S3INY'LIANY - INYN 14
LIANV/OL3/ HLYd
- _ (vB5102:r40:13HY G09SN LSINAOSITYAC) 193180 PSINALNOOTTIALXAL
TI¥ = Y03HO ‘SLSIXT INO LSV LY = JONILSIXT MO3HO (p65407:LSLTIHY 809SN LSINAODTWAO) LSAL #SININODITALXAL 3508
FIWOOTWILSAS X- VM &~ SLSOH/IL M- SNIVINGQ STTNA LIANYILIANY/OLS ‘NORALIHI— ye

STIVI0TINILSASSIN-ISIVASId-

L =3NVA/ INI=3dALYLYQ FONVLSNI
SIILAN3NSSILI/SIMv=3NTA / HOLYIN NYTLLYd=NOILYYIdO NHILLYd
S3INY LIany :FNYNT T4
LIN¥/L3/ HLYd
o _ (£6510z:rd0113HY G09S LSINAODTYAQ) 103r80" PSINTINOITTI4LX3L
TI¥=%03HD ‘S18IXT INO LSYdT LY = JONALSIXT ¥03HD (£65102:LSLTIHY 898N LSIN AOD:TYAQ) L83L PSINILNOITTALXAL aros
FIVOOTHILSAS X ¥ d - LININSSIOLI! M SNIVINOD STTNY LIONYILIONWIOLT/ NORL¥I - ye

$IT¥I0TINALSASSIHSIYMSId-

| =3N¥A/ INI=3dALYLYQ JONYLSNI
SIVMSIdISIANSSIOLIISIMh=3MTYA HOLYIN NYILLYd=NOILYY3d0 ‘N¥3LLYd
SINYLINY :FNYNT T
11anv/oL3/ Hivd
o _ (268102r90713HY G09S LSINAODTYAC) 193180 $SINILNOITTI4LX3L
TIV=%93HY ‘SLSIXT INO LS¥IT LY = JONALSIXT HOTHD :(Z65L02-LSLT3HY 898N LSIN'AO9-TYAQ) LS3L #SINALNOITTHLXAL M08
TIVOOTYALSAS Y M d- NSSUOLI M SNIYINOO STINY LIGNYILIGNYIOLY NORALNO— ye

$3VD0TINILSASSIN-

U.S. Patent Jul. 12,2016 Sheet 10 of 28
COMPLIANCE MEASURER
304
SCORE
RESULTS MONITOR COMPARATOR
902
920
SCORE CALCULATOR AGGREGATOR
904 912
SURPRISAL GROUP
CALCULATOR AGGREGATOR
906 914
IN FO(I?X/IIQTION TEMPORAL
CALCULATOR AGGRQE,I%ATOR
908 —
POLICY
SCORER AGGREGATOR
210 918

FIG. 9

US 9,392,022 B2

U.S. Patent Jul. 12, 2016 Sheet 11 of 28 US 9,392,022 B2
404 N (START)
1002—| RECEIVE NOTIFICATION OF
CHANGE IN RESULT
1004] | CALCULATE COMPLIANCE
SCORE
1006 l
COMBINE COMPLIANCE YES
SCORES?
NO
COMBINE COMPLIANCE — 1008
SCORES
-
1010 y
COMPARE COMPLIANCE YES
SCORES?
NO
COMPARE COMPLIANCE ~ |,— 1012
SCORES
< |
Y
1014
CONTINUE TO MEASURE _ YES
COMPLIANCE? J/
NO l
(RETURN)

FIG. 10

U.S. Patent Jul. 12, 2016 Sheet 12 of 28 US 9,392,022 B2

1004 N
¢ START)

1102 ~[DETERMINE MAXIMUM SURPRISAL VALUE AND
SURPRISAL VALUE OF COMPUTING RESOURCE

1104 —] DETERMINE INFORMATION GAIN BASED ON THE
CALCULATED SURPRISAL VALUES

1106 — DETERMINE COMPLIANCE SCORE OF THE
COMPUTING RESOURCE

1108 DETERMINE ANOTHER COMPLIANCE YES
SCORE?
NO
C RETURN)

FIG. 11

U.S. Patent Jul. 12, 2016 Sheet 13 of 28 US 9,392,022 B2

1010
“

¢ START)

1202 [RETRIEVE COMPLIANCE SCORES FOR
COMPUTING RESOURCES IN A GROUP

1204 —| SUM INFORMATION GAIN FOR EACH OF THE
COMPUTING RESOURCES

Y
DETERMINE COMBINED COMPLIANCE SCORE

1208 =\
STORE COMBINED COMPLIANCE SCORE

l

(RETURN)

1206 \

FIG. 12

U.S. Patent Jul. 12, 2016 Sheet 14 of 28 US 9,392,022 B2

1010 —\

(. START)

1302 RETRIEVE COMPLIANCE SCORES
"N FOR A COMPUTING RESOURCE
OVER TIME

1304 —\ l

NO

DISCRETE TIME MOMENTS? YES

SUM INFORMATION
INTEGRATE INFORMATION 1306 GAIN OVER TIMES
GAIN OVER CONTINUOUS _ N CORRESPONDING TO
RANGE 1312 BATCH COLLECTION
PROCESSES

1308 — DETERMINE COMBINED
COMPLIANCE SCORE

1310] STORE COMBINED COMPLIANCE
SCORE

(RETURN)

FIG. 13

U.S. Patent Jul. 12, 2016 Sheet 15 of 28 US 9,392,022 B2
1010 N\ (. SsTART)
L~ 1402
RETRIEVE COMPLIANCE SCORES
l 1404
NO YES
POLICIES OVERLAP?
S/~ 1414 S 1406

DETERMINE SURPRISAL VALUE AS
SUM OF SURPRISAL VALUES OF
ASSET

DETERMINE SURPRISAL VALUE AS
CONJUNCTION OF POLICIES

i /—1416

!

/S 1408

DETERMINE SUMMED
INFORMATION GAIN FOR
COLLECTION OF POLICIES

DETERMINE INFORMATION GAIN
FOR CONJUNCTION OF POLICIES

l /—1418

'

/—1410

DETERMINE COMBINED
COMPLIANCE SCORE FOR
COMPUTING RESOURCE AGAINST
COLLECTION OF POLICIES

DETERMINE COMBINED
COMPLIANCE SCORE FOR
COMPUTING RESOURCE AGAINST
CONJUNCTION OF POLICIES

Y

— 1412

STORE COMBINED COMPLIANCE
SCORE
(RETURN)

FIG. 14

U.S. Patent Jul. 12, 2016 Sheet 16 of 28 US 9,392,022 B2

RESULTS PRIORITIZER
306
RESULTS REPAIR BIAS
GROUPER CALCULATOR

1502 1520

REPAIR
EFFECTIVENESS Ezﬁ:aigg,?
CALCULATOR 1594

1522 -

REPAIRS
DATABASE DEFECT CLASS

1504 DATABASE

REPAIRS 110

MAP
1506
1512
PAST { \

REPAIR / *ee \
ACTIONS / \
DATABASE ;| L_EntyN | \

1508 / \
/ \
/ \
7 \

151311514 | 1515|1516 | 1517 | 1518 | 1519

FIG. 15

U.S. Patent Jul. 12, 2016 Sheet 17 of 28 US 9,392,022 B2

C START)
406 \ l<

1602 | GROUP DETECTED DEFECTS INTO
DEFECT CLASSES

'

1604 —\ GENERATE AN ESTIMATION
FUNCTION OF RELEVANCE

l

ESTIMATE A PRIORITY ORDER FOR

1606 —] THE DEFECT CLASSES USING
ESTIMATION FUNCTION
1608 >l
YES
Z REPAIR ACTION RECEIVED?
NO
— 1610
NO
% TIMEOUT OCCUR? >
YES Y
UPDATE REPAIR RATES
1612— OF DEFECT CLASSES
-
1614 y
CONTINUE TO PRIORITIZE ~ _YES
DEFECT CLASSES? J/
NO l
(RETURN)

FIG. 16

U.S. Patent Jul. 12, 2016 Sheet 18 of 28 US 9,392,022 B2

1604
“

C START)

1702 DETERMINE USER BIAS FOR REPAIRING DEFECTS IN A
N DEFECT CLASS BASED ON PREVIOUS ASSESSMENT
RESULTS AND/OR PAST USER ACTIONS

l

1704 DETERMINE REPAIR EFFECTIVENESS OF REPAIRING A
"N DEFECT FOR A POLICY ENFORCED IN A COMPUTING
ENVIRONMENT

'

1706 — GENERATE AN ESTIMATION FUNCTION FOR
UNREPAIRED DEFECTS

1708 l

GENERATE ANOTHER ESTIMATION FUNCTION?

T

C RETURN)

YES

FIG. 17

US 9,392,022 B2

Sheet 19 of 28

Jul. 12, 2016

U.S. Patent

808l g} 'Oid
>

fAT4NOH 1 SLO3rd0 TIv

-

MON |- ¢ €

& ¢ 9

~

¢08
(

AT4NOH | $103rg0 TV

JONVITdNOD H

¢S9 HLTVIH SIAHM @

MON }- C e A i 9

S3NSSI ALVIAINAI
HLTV3H a

dvIN dIHLYIM HLTYIH

NOILYY3dO INJANOHIANT | Q¥v0gHSYa]

SININLYVd3A «4
RENERERIERR
SdNOYO TYNOILONNS <4
SdNOYO NOILYIOT «4

SHIAYIS FONVHOXT Ga

SY3NY3S T0S &

$133rd0 ONINIQYVYH FYYMINA Ga

TYNYALNI - S193rg0 TVIILIHO &

X0OS - 8103rd0 ONILINNOJJV &a

10d - $103rd0 IONVNI4 &a
SdNOYO FONVITINOI a

ASNOILOY |

13d - §123r90 JONVNId &

a2 =5 @ & »

9081 <vosl w0081

US 9,392,022 B2

Sheet 20 of 28

Jul. 12, 2016

U.S. Patent

61 "OId

10380 SHL ¥04 S3H00S JONYITAHO0 INIHMND ON 3 L L »

AJVAIANS NOJ FYANA'ONT ISHdN0D

c061l
¢lel vliel 0Olol 2061 /«
R
XS0 JVW = «
1609k b s praae 5 & 30IN9 ININFQHYH § JHHSA SaTING =K «
. {T0HSTHHL AG INNOD . wxm%%wH mp]
" — [mR]
AJVIINNS NOILYINdOd SINHIYI TYNLHIA S «
M SWALIQLYT3Y STIV130 (AMVIANS)| WO THYMMAONT DSHdIN0D =+
\ NOO FHYMINA'ONT JSHdN00] —E_ >
.\ \ FONYITINOD THYMKA
{ {
8061 7061 ﬁ/.s 0061

U.S. Patent

2000\

Jul. 12, 2016

Sheet 21 of 28

2004

VMWARE COMPLIANCE

Yy

€ [@] a8

EICOMPRSC ENG.VMIWARE.CON

& COMPRSC.ENG.VMWARE COW
» T3 VIRTUAL MACHINES

» CIHOSTS
» B BlJ|L0S
» B AC 05X
> Bn R§D

2002

» ONETORKS 2006]

US 9,392,022 B2

SUMMARY DETALS [RELATED ITEMS]

& 600D J|| &> WARNING J||<= CRITICAL

SCORE ~ | OBJECT NAWE

VSPHERE § HARDENING GUIDE : VSPHERE 5 SETTINGS FOR THE COMPLIANCE CHECKER (120)

88 SRVIKEG4AGENT! 1

86 SRVZKEG4AGENT?

69 BOBHKS:

G269 SRVZKSH4AGENT!

&5 TESTWDR

&5 TESTW 2

&34 1230654 VCO APPLICANCE

>3 1309830 - VMWARE VCENTER OPERATIONS MANAGER SUITE APPLIANCE

&34 1338785 YMWARE VCENTER OPERATIONS MANAGER SUITE APPLIANCE

&34 2456420 - YMWARE VCENTER OPERATIONS MANAGER SUITE APPLIANCE

&34 2468259 - YMWARE VCENTER OPERATIONS MANAGER SUITE APPLIANCE

&Y MDEMODBIB CPSC

Sy ANALYTICS WM ~2008

3 ANALYTICS W

E3 3 ANALYTICS VM

&3 ANALTICS YW

&34 BOBHTEST

© Y BORAIIONM-ADMIN

&3 BORA33OTIDATAY

23 BWILLISUITES75460

¥ COCVOPS

3 CCEN-TI8

S>3 COEN-MSHFINAL

&34 COEN-MSZFINAL

&> 3 CLOUDVM-118603

&3 CLOUDVM-§25853 {NO MOCK)

&3 CLOUDVM-§25653 {USEMOCK)

HOST SCORES (21 COUNT Y THRESHOLD:

DISTRIBUTED VIRTUAL PORT GROUP SCORES (20) COUNT Y THRESHOLD:

FIG. 20

US 9,392,022 B2

Sheet 22 of 28

Jul. 12, 2016

U.S. Patent

L¢ "Old

cCle— vele—

4
Y A0 O A T S L S D T S . © $ @
WO LY S TOTO ALY @ > ®
O3 T T ¥ ST oK T SR AT O TE S AL S @ o ®|lgz,z
SRV D K1 (A A ® > ®
00 (RS 0 T ONSSY S, @ ® ®
T SR RS L. © ® 0
e S TN COORSSHe O S A (LIS @ ®
TR0 SO TN ST AL L e © o ®
TIROLE I S WHALLENE © ® ® 2012
oI 0L S ATOdSIRGHREL (W AL L @ ® ®
MIRTIE © ® @
A3 T1AVSI0 ® ® @ ||IBLLE1Id55IT g«
ORI SSI EN ST TR STl @) ARSI B <
TOUIROD IVRISHAGY To0 Deed OO TR @) e
RS WO R © ® © e ERD
1G0H IYS3 ¥ H04 ONI9901 INISISH3d N91NOD 0] ® © SINKOMA THNLHA 2 «
WLV MLV ® o © S
T T D TR TSR TAIT) & «
Y7 LSB L7 NONRA 137 -)
300 NISCAHS 2346 e e
a ML RIS O3 O <
2llz vz 0Lz |\ 9012 R s,
NN N 1500 <
M 125 78Sl © 30009 ONNE0HYH Be3Hsh %MM
 CIORSBLAIING WO O <
Y AVIWINNS NOILYNdOd CNHOH LA © «
¥ SR STATTLANNNS) MOV HMIAONT DSHehQ) el
7 BRI EENE %o @]
a 7 ¥ TNVTIAN0) A
f
wo\rm 141]%4 ® 0012

US 9,392,022 B2

Sheet 23 of 28

Jul. 12, 2016

U.S. Patent

yzzz 2228 v_‘mN 0222 ¢¢ 9Id 8Lzz 9122
| !]
[)) v \ 7/
W Ioh s = D (RS S S0 NOILTING) 20 TS CZoRTn [l @ o ®
BT
TR T R S ST)
TSR ETREE e TR R R TRl © > 0 n A 2
I 155 28 N O0LTI0 © o @ ST =
S N p NS S T @
WL Bl B RS] LS 2
g TR =% LU S
TSR TR TSI ® © SIdiRcIN 8
W 15 EL60E HOWH AN I VERIES0 @ o @ BI85 B«
WY IS) NOSOTOLNY S ESOAA MRS Y | 0TS @ o @ IS B«
WY IS)8 0NN RHSH oo S [| kTt @ & iRTED
I IS)t TV TSRO @ | e s o o ° ST O <
Y ISBELBE T N Tereon ST e 0 T © ¢ @ Y @
WY IS 2)e TNONEOSHS RS, (TEMAS MO TS HONOMHL SHACLSTN TMND) - © > @ T @ <
iy IShEhe T MENHH RIS 8222 SIS0 INISSUENON DVANIEN SNSRIy © > ® ST & <
T TSh TR TS S, T S O TRl © %) T «
V0 LS | TS » TN TSV IR0 CNVHO [AL3AES SNLYIS AN = <
T T T AR T T T N EE SN © <
/ moméﬂv
Y30 14 <
y 20zz—" g o <
X N 7 1 =P
/AN e A T o Ao -
7 7\ 7 ST [§1WL30 [TV OIS SOLIEDAS)
/ / \] FITH = SIEIE
Y / 7 | _ VALY TIVTIOR0) T
_ , _ ! _ 9z2z _ \ % _
zLee AYAARATAS 0122 80zz 0¢£ce 90¢¢ yoce 0022

US 9,392,022 B2

Sheet 24 of 28

Jul. 12, 2016

U.S. Patent

€¢ 9ld
01€2 “NINGY NO ONIAGS INFATHd > | ® | NHWW VLA INA
N e ENERNEN K ® WIOMLIN [€2} YHOMIIN
J10W4 01 31SVd/A0Y F18%810 ® JH0LSYLVA [98Y JOLSYIVd
"V SIHILYG ISAYT NN | ® 1S0H) 1S0H
ONIYNISHS XSIC TYnLYIA INFAJHd ® 190H | 1SOH
3104 ALN3AIS SNIYVIS JALLOE0 N LIM90 L-71.€2
@ ® C___m OO s 2 ® o [@] s <]
e \> (ST [SONAL)
@ gl¢ce
il SAVQ0E JONVTIdNGD 40 10 FMIL fAON
0 INVIdWOd
> 5 oxce Al
{ 80€¢ ~, s) K 0 = SOUYANYIS OB «
@ ON|O ¥ 7 =g =1 SUYANYLS ZW] <
_ G Vi 7 NN SIOWISSHODNM <
<D ” [! HoN R EA TR =)
¢ ¥ BT A0 clee N—.mN clee »E SAYQL LSV e M._.% m_m_ﬁo_m_
. . hEIERAN ORI =]
A”V \ 16 30In9 NINIQUYH JYMAA - ¥3LNIOVLVA IINOYNE @D wz_zmmm_s._ VA o
@ / [STvL30] RN STAVANFLS 3NV 1dN0J
/ SNQILDY |16 301N9 ONINFAHYH FHYANA - 43INI0YLYT IINONY = PEEEEE-T
(a ©) 1N08Y I d1H \.So 007 1 SNOILYDIILON | NOILYHNOINGY | 2 .\Ews L] wzo_._..ﬁmmo LEINERERLAT
{ ! 1
¥0ce 90¢2
c0¢e (/ 00€Z

U.S. Patent Jul. 12, 2016 Sheet 25 of 28 US 9,392,022 B2

|
2428
2414 £ | —~
| /S MASS
| RANDOM ™ STORAGE =y
RANDOK .

|| MEMORY oS
| L o 2422 | - ;

INPUT
| ” DEVICE(S) l

~

| READ ONLY $ /= 2820 l =
| - MEMORY g |
e 2418_\0 INTERFACE |~
| 2412 { 2424 |

OUTPUT
: PROCESSOR DEVICE(S) :

LOCAL >
| MEMORY |
| . 2413 |
" 2432

US 9,392,022 B2

Sheet 26 of 28

Jul. 12, 2016

U.S. Patent

‘
. 1 1 1 1 1 1 1 1 1
vSe 'Old
4 1 1 1 1 1 1 4 1
SIID €8y =
96z d 4 d d d d 1 d d
A|Esooﬁwv zbol- = (0l 1)l 1 1 1 1 1 1 4 4 4
6 =unooles 3 4 d d d | 1 E| E| E|
1 1 1 1 1 d d d d
d 1 1 1 4 d d d d
d 1 d 1 4 d d d d
d 1 1 d 4 d d d d
4 4 1 4 E 4 4 4 4
4 1 4 E E 4 4 4 4
YE 4 4 E 4 4 4 4 4
[S A

8A ANV ZA ANV 9A ANV SA ANV
(¥A HO €A-) ANV (ZA 1O LAS) = Ld

SMOY
96¢

US 9,392,022 B2

Sheet 27 of 28

Jul. 12, 2016

U.S. Patent

8s9¢ Old

S 2y ¢ =

4 .
Agv cbor- = (1elLd)i

L
L

9 = Junooles 3

-
-

-

[Ny RUES REEY RUES R Uy REE
TN o IV P e

Ljw|——|Ww|+-

L—9A'L<SA'd< LA} = |B

8A ANV ZA ANV 9A ANV SA ANV
(PA HO €A-) ANY (ZA YO LAY) = ILd

\SMOY
4%

U.S. Patent Jul. 12, 2016 Sheet 28 of 28 US 9,392,022 B2

404
—~

START)
2602 —| RETRIEVE COMPLIANCE
SCORES TO COMPARE
2604 l
COMBINE COMPLIANCE YES
SCORES?
NO
COMBINE COMPLIANCE — 2606
SCORES
-
2608 y
COMPARE COMPLIANCE YES
SCORES?
NO
COMPARE COMPLIANCE — 2610
SCORES
< |
y
2612
CONTINUE TO MEASURE '\ YES
COMPLIANCE? J/
NO l
C RETURN)

FIG. 26

US 9,392,022 B2

1
METHODS AND APPARATUS TO MEASURE
COMPLIANCE OF A VIRTUAL COMPUTING
ENVIRONMENT

RELATED APPLICATIONS

This patent arises from a non-provisional application
which claims the benefit of U.S. Provisional Application Ser.
No. 61/819,462, filed on May 3, 2013, which is hereby incor-
porated herein by reference in its entirety.

FIELD OF THE DISCLOSURE

This disclosure relates generally to virtual computing, and,
more particularly, to methods and apparatus to measure com-
pliance of a virtual computing environment.

BACKGROUND

Compliance policies are often used to monitor and main-
tain resources deployed in computing environments such as
data centers. Policies such as the Payment Card Industry Data
Security Standard, the Department of Defense Information
Assurance Certification and Accreditation Process, vendor-
supplied hardening guides, etc., provide strong guidelines for
handling and protecting sensitive data. Failure by an organi-
zation to comply with these standards may result in loss of
revenue, loss of reputation, and/or loss of accreditation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of an example virtual computing
environment.

FIG. 2 is a block diagram of an example implementation of
the example virtualization manager of FIG. 1.

FIG. 3 is a block diagram of an example implementation of
the example compliance monitor of FIG. 2.

FIG. 4 is a flow chart representative of example machine-
readable instructions that may be executed to determine
policy compliance of computing resources of a virtual com-
puting environment.

FIG. 5is a block diagram of an example implementation of
the example compliance assessor of FIG. 3.

FIGS. 6 and 7 are flow charts representative of example
machine-readable instructions that may be executed to per-
form event-driven compliance testing of computing resources
in a virtual computing environment.

FIGS. 8A and 8B illustrate an example compliance events
record generated by the example compliance monitor of
FIGS. 2 and/or 3 to log compliance states of a computing
resource with different criteria of a compliance policy rule.

FIG. 9 is a block diagram of an example implementation of
the example compliance measurer of FIG. 3.

FIGS. 10-14 are flow charts representative of example
machine-readable instructions that may be executed to mea-
sure compliance states of computing resources in a virtual
computing environment.

FIG. 15 is a block diagram of an example implementation
of the example results prioritizer of FIG. 3.

FIGS. 16 and 17 are flow charts representative of example
machine-readable instructions that may be executed to iden-
tify priorities of assessment results of policy compliance of
computing resources in a virtual computing environment.

FIGS. 18-23 illustrate example graphical user interfaces
generated by the example reporter of FIG. 3 to generate
reports for a user.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 24 is a block diagram of an example processing plat-
form capable of executing the example machine-readable
instructions of FIGS. 4, 6, 7, 10-14, 16 and 17 to implement
the example compliance monitor of FIGS. 2 and/or 3, the
example compliance assessor of FIGS. 3 and/or 5, the
example compliance measurer of FIGS. 3 and/or 9, and/or the
example results prioritizer of FIGS. 3 and/or 15, respectively.

FIGS. 25A and 25B illustrate example truth tables repre-
senting functional values of an example policy.

FIG. 26 is a flow chart representative of example machine-
readable instructions that may be executed to measure com-
pliance states of computing resources in a virtual computing
environment.

DETAILED DESCRIPTION

Physical computing environments include physical com-
puting resources such as servers, storage devices, etc. Physi-
cal computing resources may be expensive to maintain and/or
may require specialized knowledge to operate and/or service.
Virtual computing environments (sometimes referred to as
“virtual data centers”) virtualize such physical resources or
physical components making it possible for someone who
does not actually own the physical computing resources (e.g.,
servers, storage components and networks) to utilize the
resources through commercial transactions. Virtualizing
aggregates and presents various physical resources as virtual
resources in a virtual computing environment.

Over time, sensitive data and information has accumulated
in virtual computing environments as virtual computing has
been adopted in more and more industries. For example,
computing environments may store medical records, credit
card information, user identification information (e.g., social
security numbers), etc. Organizations are under strenuous
requirements to protect information stored within their com-
puting environments. When combined with the trend towards
virtualization, the growing inventory of virtual machines, and
the emergence of software-defined data centers (e.g., virtual
data centers), the task of ensuring compliance with various
regulations and standards has become daunting. Further,
given budget and other constraints, organizations must man-
age larger, more complex environments with the same or
fewer information technology (IT) maintenance and manage-
ment resources. Such stretching of resources makes compli-
ance an even greater challenge. As the quantity of stored data
has exploded in the virtualization era, server configuration
analysis has become time-consuming and often requires mul-
tiple tools.

Compliance policies are used to increase the security and/
or privacy protections of computing environments. Such poli-
cies define rules for computing resource configurations (e.g.,
configuration settings) within the computing environments.
Different compliance policies define different sets and/or
types of rules and/or requirements for deployment and/or
configuration settings of physical and/or virtual computing
environments (e.g., physical and/or virtual data centers).
Thus, a compliance policy describes the state and/or states
that a computing environment and/or its resources should be
in (e.g., a compliant posture) when the computing environ-
ment and/or its resources are in compliance with a policy. A
compliance posture is a level of assurance that adequate con-
trols have been implemented to meet the goals of a policy
(e.g., information protection). A computing resource (or a
computing asset) is a type of resource with inspect-able
attributes and/or properties. A configuration of the computing
resource refers to the state of the various attributes and/or
properties. A configuration policy defines the config-

US 9,392,022 B2

3

uration(s) acceptable for compliant operation. Computing
resources include physical hosts, virtual machines, virtual
network configurations, data structures, data centers, soft-
ware applications, etc. The configuration settings of a com-
puting resource may be subject to two or more policies having
different purposes. For example, a computing resource may
be subject to one or more policies to preserve information
security, one or more policies to satisfy legal or regulatory
requirements, one or more policies to satisfy corporate or
industry standards, one or more policies to maintain high
performance or efficiency, one or more policies to satisfy
contractual or quality of service goals, etc.

Different compliance policies (sometimes referred to as
“policies,” “regulations,” “benchmarks,” “guidelines,” “stan-
dards” or “best-practices”) may originate from different
policy writing organizations such as the National Institute of
Standards (NIST), the Center for Internet Security (CIS),
industry groups like the Payment Card Industry (PCI), regu-
lations like the Health Insurance Portability and Accountabil-
ity Act (HIPAA), and/or product manufacturers. Each policy
represents a standard of operation with which a computing
resource configuration must comply. Since policies originate
with different entities, the policies may be inconsistent with
each other. For example, a first policy may specify that a
system must rotate log files so that logs never exhaust disk
space, while a second policy may require that logs persist
forever and that the system must cease operation if log storage
space becomes exhausted.

An assessment (sometimes referred to as a “compliance
assessment,” a “policy assessment” or a “compliance test”)
tests whether a resource adheres to a designated set of poli-
cies. Conventionally, policies are made available to system
administrators as human-readable language (e.g., English)
documents that put the onus on the system administrator to
read, interpret and determine whether a computing environ-
ment is in compliance with the policy. In some examples, to
reduce unnecessary business risk, policy publishers and/or
organizations may provide a policy in a machine-readable
form written using a structured language, program, or script.
In such a format, the policy may contain one or more rules.
Rules are Boolean-valued logical expressions (e.g., expres-
sions constituting criteria formed by combining individual
criterion using operators (or connectors) such as the logical
AND operator, the logical OR operator, or the logical NOT
operator). Each criterion implements either a Boolean-valued
test of one resource configuration (e.g., a property) setting, or
a reference by name to another criterion, set of criteria, or a
rule. When executed in software, machine-readable policies
automate the process of regulatory compliance.

When software is used to automate assessment (e.g., via
Open Vulnerability Assessment Language (OVAL) or Exten-
sible Configuration Checklist Description Format (XC-
CDF)), a management application managing a virtual com-
puting environment can automatically test the virtual
computing environment against numerous policies. When an
acceptable compliance posture is achieved, the management
application attempts to maintain the compliant posture. Thus,
the management application must effectively respond to
changes in the environment (e.g., events) and inform a system
administrator (or operator) of the impact of the change(s).

FIG. 1 is an illustration of an example virtual computing
environment 100. The example virtual computing environ-
ment 100 of FIG. 1 includes an example network of storage
arrays 102 in communication with example computing serv-
ers 104. The example network of storage arrays 102 may be
implemented using any suitable wired and/or wireless storage
including, for example, one or more Fiber Channel Storage

40

45

55

4

Area Network (SAN) arrays, one or more Internet Small
Computer System Interface (iISCSI) SAN arrays, one or more
Network Attached Storage (NAS) arrays, etc. In the illus-
trated example, the network of storage arrays 102 are con-
nected to and shared between groups of servers through stor-
age area networks, thereby enabling aggregating storage
resources and enabling increased flexibility in provisioning
the storage resources to, for example, example virtual
machines 110.

In the illustrated example of FIG. 1, the example storage
servers 104 may be x86 servers in communication with the
example network of storage arrays 102 via an example net-
work 106. The network 106 of FIG. 1 may be implemented
using any suitable wired and/or wireless network(s) such as,
for example, one or more data buses, one or more Local Area
Networks (LLANs), one or more wireless LANs, one or more
cellular networks, the Internet, etc.

In the illustrated example of FIG. 1, the example comput-
ing servers 104 provide example virtualization platforms 108.
The example virtualization platforms 108 of FIG. 1 respec-
tively execute on corresponding ones of the example comput-
ing servers 104. An example virtualization platform 108
(sometimes referred to as a “virtualization layer,” a “hyper-
visor” or a “virtual machine monitor”) abstracts processor,
memory, storage and/or other resources of the computing
server 104 into one or more virtual machines 110. In the
illustrated examples, a virtual machine 110 includes an oper-
ating system and/or executes one or more applications (some-
times referred to herein as “appliances”). In some examples,
the virtualization platform 108 may be installed on a comput-
ing server 104 without an operating system (e.g., a bare metal
hypervisor). In some examples, the virtualization platform
108 may be installed on a storage device rather than on a
computing server. The example virtualization platform 108
virtualizes and aggregates the underlying physical hardware
resources (e.g., the example network of storage arrays 102
and/or the example computing servers 104) across the physi-
cal computing environment and provides pools of virtual
resources available for use in the virtual computing environ-
ment 100. Thus, by using the resources available from the
physical components of the virtual computing environment
100, the example virtual machines 110 may request resources
dynamically as a workload increases or release resources
dynamically as the workload decreases.

The example virtual machines 110 of FIG. 1 may be des-
ignated to a particular host, cluster or resource pool, or a data
center when they are created. A host is a virtual representation
of computing and memory resources of a physical computing
server 104 executing a virtualization platform 108. When two
or more physical computing servers 104 are grouped to work
and be managed as a whole (e.g., as a single entity or com-
puting resource), the aggregate computing and memory
resources may be referred to as a cluster. In some examples, a
computing server may be dynamically added or removed
from a cluster. Computing and memory resources from hosts
and/or clusters may be partitioned into a hierarchy of resource
pools.

To manage the virtual computing environment 100, the
example virtual computing environment 100 of FIG. 1
includes an example virtualization manager 112. The
example virtualization manager 112 provides a single point of
control to the virtual computing environment 100. In the
illustrated example, the virtualization manager 112 manages
the assignments of virtual machines 110 to be virtualized on
corresponding ones of the computing servers 104, and man-
ages the assignments of resources of the computing servers
104 to the virtual machines 110. In the illustrated example,

US 9,392,022 B2

5

the virtual computing environment 100 is accessible via an
example management client 114. For example, a virtual
machine 110 in the virtual computing environment 100 may
be accessed via a web access interface through a web browser
of the client 114. In some other examples, the virtualization
manager 112 may include one or more interfaces that enable
other applications to manage the example virtual computing
environment 100 and access the example virtualization plat-
forms 108 and/or the example virtual machines 110.

FIG. 2 is a block diagram of an example implementation of
the example virtualization manager 112 of FIG. 1. In the
illustrated example of FIG. 2, the virtualization manager 112
enables centralized management of the example virtual com-
puting environment 100. The example virtualization manager
112 aggregates physical resources via the example virtualiza-
tion platforms 108 and presents a central collection of
dynamic resources that may be provisioned to example vir-
tual machines 110 in the virtual computing environment 100.
In the illustrated example, the virtualization manager 112
includes an example user access controller 202, an example
distributed services controller 204, an example active direc-
tory interface 206, an example database interface 207, an
example virtualization platform interface 208 and an example
core services controller 216.

In the illustrated example of FIG. 2, the user access con-
troller 202 enables creating and managing different levels of
access to the virtualization manager 112 based on, for
example, different user classes. User classes define different
access rights to different users. For example, users in a first
user class may be permitted to create and manage physical
virtualization hardware in the virtual computing environment
100, while users in a second user class may be permitted to
manage virtual resources within a particular resource pool in
a virtual machine cluster.

In the illustrated example of FIG. 2, the example distrib-
uted services controller 204 enables extending the capabili-
ties of a virtualization platform 108 beyond a single comput-
ing server 104. For example, the distributed services
controller 204 may include an example distributed resource
scheduler (DRS) 220 to allocate and/or balance computing
capacity dynamically across collections of hardware
resources for virtual machines 110 (FIG. 1), an example
availability manager 222 to enable restarting a virtual
machine 110 on another computing server 104 if, for
example, an initial computing server hosting the virtual
machine 110 fails, an example fault tolerance manager 224 to
enable creating a secondary copy of an original (or primary)
virtual machine 110, an example vMotion manager 226 to
enable migration of virtual machine(s) from one computing
server 104 to another computing server, etc.

In the illustrated example of FIG. 2, the virtualization
manager 112 includes example interfaces 206, 207, 208 to
enable integrating additional or third party applications with
the virtualization manager 112. For example, the active direc-
tory interface 206 of the illustrated example enables commu-
nicating with an example active directory server 210 to, for
example, obtain user access control information. In the illus-
trated example, the database interface 207 enables the virtu-
alization manager 112 to communicate with an example data-
base 212 to store information such as virtual machine
configurations, host configurations, resources and virtual
machine inventory, performance statistics, events, alarms,
user permissions and/or roles, etc. The example virtualization
platform interface 208 of the illustrated example enables the
virtualization manager 112 to communicate with one or more

10

15

20

25

30

35

40

45

50

55

60

65

6

application plug-ins 214, third party applications 215 and/or
management clients (e.g., the example management client
114 of FIG. 1).

In the illustrated example of FIG. 2, the virtualization
manager 112 includes the example core services controller
216 to provide management services for the virtual comput-
ing environment 100. For example, the core services control-
ler 216 may include an example virtual machine provisioner
228 (to manage automated provisioning of virtual machines
and their resources), an example host and virtual machine
configurer 230 (to enable configuring hosts and virtual
machines in the virtual computing environment 100), an
example resources and virtual machine inventory manager
232 (to organize and manage virtual machines and resources
in the virtual computing environment 100), an example sta-
tistics logger 234 (to log and report performance and resource
usage statistics of computing resources such as virtual
machines, hosts, storage devices, and/or clusters), an example
alarms and events manager 236 (to track and warn users about
potential resource overuse or event conditions), an example
task scheduler 238 (to schedule actions to occur at a given
time), etc.

In the illustrated example of FIG. 2, the core services
controller 216 includes an example compliance monitor 218
to monitor policy compliance of the virtual computing envi-
ronment 100. Although the compliance monitor 218 may be
implemented as an application in the core services controller
216 in FIG. 2, the example compliance monitor 218 may
alternatively be included as a plug-in (e.g., the example plug-
in 214) and communicate with the example virtualization
manager 112 via the virtualization platform interface 208. In
the illustrated example, the compliance monitor 218 receives
a notification when an event (e.g., a configuration change in
one or more computing resources of the virtual computing
environment 100) is detected. The compliance monitor 218 of
the illustrated example assesses the impact of the event on the
compliance posture of one or more resources with respect to
one or more policies that are enforced in the virtual comput-
ing environment 100.

While an example manner of implementing the example
virtualization manager 112 of FIG. 1 is illustrated in FIG. 2,
one or more of the elements, processes and/or devices illus-
trated in FIG. 2 may be combined, divided, re-arranged, omit-
ted, eliminated and/or implemented in any other way. Further,
the example user access controller 202, the example distrib-
uted services controller 204, the example active directory
interface 206, the example database interface 207, the
example virtualization platform interface 208, the example
active directory server 210, the example database 212, the
example plug-in 214, the example third party application 215,
the example core services controller 216, the example com-
pliance monitor 218, the example distributed resource sched-
uler 220, the example availability manager 222, the example
fault tolerance manager 224, the example vMotion manager
226, the example virtual machine provisioner 228, the
example host and virtual machine configurer 230, the
example resources and virtual machine inventory manager
232, the example statistics logger 234, the example alarms
and events manager 236, the example task scheduler 238
and/or, more generally, the example virtualization manager
112 of FIG. 1 may be implemented by hardware, software,
firmware and/or any combination of hardware, software and/
or firmware. Thus, for example, any of the example user
access controller 202, the example distributed services con-
troller 204, the example active directory interface 206, the
example database interface 207, the example virtualization
platform interface 208, the example active directory server

US 9,392,022 B2

7

210, the example database 212, the example plug-in 214, the
example third party application 215, the example core ser-
vices controller 216, the example compliance monitor 218,
the example distributed resource scheduler 220, the example
availability manager 222, the example fault tolerance man-
ager 224, the example vMotion manager 226, the example
virtual machine provisioner 228, the example host and virtual
machine configurer 230, the example resources and virtual
machine inventory manager 232, the example statistics logger
234, the example alarms and events manager 236, the
example task scheduler 238 and/or, more generally, the
example virtualization manager 112 could be implemented
by one or more analog or digital circuit(s), logic circuits,
programmable processor(s), application specific integrated
circuit(s) (ASIC(s)), programmable logic device(s) (PLD(s))
and/or field programmable logic device(s) (FPLD(s)). When
reading any of the apparatus or system claims of this patent to
cover a purely software and/or firmware implementation, at
least one of the example user access controller 202, the
example distributed services controller 204, the example
active directory interface 206, the example database interface
207, the example virtualization platform interface 208, the
example active directory server 210, the example database
212, the example plug-in 214, the example third party appli-
cation 215, the example core services controller 216, the
example compliance monitor 218, the example distributed
resource scheduler 220, the example availability manager
222, the example fault tolerance manager 224, the example
vMotion manager 226, the example virtual machine provi-
sioner 228, the example host and virtual machine configurer
230, the example resources and virtual machine inventory
manager 232, the example statistics logger 234, the example
alarms and events manager 236 and/or the example task
scheduler 238 is/are hereby expressly defined to include a
tangible computer readable storage device or storage disk
such as a memory, a digital versatile disk (DVD), a compact
disk (CD), a Blu-ray disk, etc. storing the software and/or
firmware. Further still, the example virtualization manager
112 of FIG. 1 may include one or more elements, processes
and/or devices in addition to, or instead of, those illustrated in
FIG. 2, and/or may include more than one of any or all of the
illustrated elements, processes and devices.

FIG. 3 is a block diagram of an example implementation of
the example compliance monitor 218 of the example virtual-
ization manager 112 of FIG. 2. The example compliance
monitor 218 enables determining policy compliance states of
the computing resources of the virtual computing environ-
ment 100 and identifying computing resources that are not in
compliance with the policies. In the illustrated example of
FIG. 3, the example compliance monitor 218 includes an
example compliance assessor 302, an example compliance
measurer 304, an example results prioritizer 306, an example
compliance database 308 and an example reporter 318. The
example policy database 310 stores the policy (or policies)
enforced in the virtual computing environment 100 of FIG. 1.
A policy may be stored in the policy database 310 as a docu-
ment (or other type of data structure such as a list, a table, etc.)
including Boolean-valued checks for the policy.

The example compliance monitor 218 of FIG. 3 includes
the example compliance assessor 302 to assess or determine
policy compliance of computing resources in real-time (or
substantially near real-time) after a configuration change
occurs (e.g., when a change event is detected) in the virtual
computing environment 100. For example, the compliance
assessor 302 may monitor an event stream that signals con-
figuration changes to computing resources in the virtual com-
puting environment 100. When an event corresponding to a

10

15

20

25

30

35

40

45

50

55

60

65

8

configuration change of a computing resource (e.g., the
example network of storage arrays 102 (FIG. 1), the example
computing resources 104 (FIG. 1), the example virtualization
platform 108 (FIG. 1), and/or the example virtual machines
110) is detected, the example compliance assessor 302 iden-
tifies other computing resources that are affected by the event.
For example, the compliance assessor 302 may use an inven-
tory list of computing resources that relate to other computing
resources. The compliance assessor 302 of the illustrated
example also tests those computing resources against com-
pliance policies enforced in the virtual computing environ-
ment 100 (e.g., by automatically applying policy rules,
checks, and/or tests to the states of data structures, resources,
etc.). In this manner, the example compliance assessor 302 of
FIG. 3 provides updated compliance results (e.g., assessment
results) in real-time or substantial real-time (e.g., less than ten
seconds). In some examples, the compliance assessor 302
pre-populates the policy database 310 with one or more poli-
cies, populates the policy database 310 with a specified policy
(or policies), and/or updates the policy database 310 periodi-
cally (e.g., every 24 hours, every Monday at 9:00 AM, etc.)
and/or aperiodically (e.g., when prompted to update) with
updates to existing policies such as modifying, adding, or
removing criteria. In some examples, the compliance asses-
sor 302 stores the assessment results and/or other correspond-
ing information in the example results database 312 of the
compliance database 308.

The example compliance monitor 218 of FIG. 3 includes
the example compliance measurer 304 to measure the extent
to which a computing resource is adhering to compliance
policies during operation. By measuring compliance, the
example compliance measurer 304 may use a compliance
policy as a metric for measuring the configuration quality of
a computing resource. In addition, the example compliance
measurer 304 may use a detected event, categorized as a gain
or loss of compliance, to determine a normalized compliance
score. In some examples, combining compliance scores over
time, over groups of computing resources (e.g., a cluster of
virtual machines 110) and/or with other policies enables the
example compliance measurer 304 to distinguish relevant
events from irrelevant events (e.g., configuration changes that
increase or decrease a compliance score versus configuration
changes that do not affect the compliance score), to track
compliance trends, to identify compliance issues that are of
greater importance to the corresponding user based on his-
torical data, etc. In some examples, the compliance measurer
304 stores the scores and/or other corresponding information
in the example scores database 314 of the compliance data-
base 308.

The example compliance monitor 218 of FIG. 3 includes
the example results prioritizer 306 to prioritize (e.g., flag,
identify, etc.) results of compliance assessments based on
historical performances or actions of an organization (e.g., a
system administrator, an information technology (IT) admin-
istrator, etc.). The example results prioritizer 306 analyzes
historical data to determine the importance of an assessment
result to an organization based on past actions responding to
the same type(s) of assessment results. In the illustrated
examples, historical data includes previous assessment
results (e.g., as determined by the example compliance asses-
sor 302), responses to the results (e.g., repairing a defect),
changes in compliance scores (e.g., as calculated by the
example compliance measurer 304), rates of changes to com-
pliance scores (e.g., as calculated by the example compliance
measurer 304), etc. For example, if a first computing resource
fails a Payment Card Industry (PCI) test (e.g., generates a first
defect) and a second computing resource fails a Center for

US 9,392,022 B2

9

Internet Security (CIS) test (e.g., generates a second defect),
the example results prioritizer 306 analyzes historical data to
determine whether historical response times are quicker (e.g.,
reduce defects at a greater rate) to address (e.g., repair, reme-
diate, etc.) computing resources that fail a PCI test or to
address repairs to computing resources that fail a CIS test. In
some such examples, the results prioritizer 306 may prioritize
the first and second defects accordingly (e.g., the first defect
flagged to be addressed before the second defect) based on,
for example, previous responses or rates of responses to simi-
lar defects. In some examples, the results prioritizer 306
stores the priority order and/or other corresponding informa-
tion in the example priority order database 316 of the com-
pliance database 308 for display to a user in, for example, a
results report.

The example compliance monitor 218 of FIG. 3 includes
the example reporter 318 to generate reports based on infor-
mation stored in the compliance database 308. For example,
the reporter 318 of the illustrated example retrieves assess-
ment results stored in the results database 312 and generates
a report identifying the assessment results for a computing
resource(s), a policy (or policies) that was/were tested, satis-
fied and/or failed, the virtual computing environment 100,
etc. In some examples, the reporter 318 retrieves compliance
scores from the scores database 314 and generates a report
identifying the compliance scores for a computing
resource(s), a policy (or policies), the virtual computing envi-
ronment 100, etc. In some examples, the reporter 318
retrieves rankings from the priority order database 316 and
generate a report identifying the ranked order of the assess-
ment results to facilitate correcting issues in an order consis-
tent with past practices. The example reporter 318 of FIG. 3
may generate reports as documents for printout, as a graphical
user interface for display via, for example, a monitor, etc.

While an example manner of implementing the example
compliance monitor 218 of FIG. 2 is illustrated in FIG. 3, one
or more of the elements, processes and/or devices illustrated
in FIG. 3 may be combined, divided, re-arranged, omitted,
eliminated and/or implemented in any other way. Further, the
example compliance assessor 302, the example compliance
measurer 304, the example results prioritizer 306, the
example compliance database 308, the example policy data-
base 310, the example results database 312, the example
scores database 314, the example priority order database 316,
the example reporter 318 and/or, more generally, the example
compliance monitor 218 of FIG. 2 may be implemented by
hardware, software, firmware and/or any combination of
hardware, software and/or firmware. Thus, for example, any
of the example compliance assessor 302, the example com-
pliance measurer 304, the example results prioritizer 306, the
example compliance database 308, the example policy data-
base 310, the example results database 312, the example
scores database 314, the example priority order database 316,
the example reporter 318 and/or, more generally, the example
compliance monitor 218 could be implemented by one or
more analog or digital circuit(s), logic circuits, program-
mable processor(s), application specific integrated circuit(s)
(ASIC(s)), programmable logic device(s) (PLD(s)) and/or
field programmable logic device(s) (FPLD(s)). When reading
any of the apparatus or system claims of this patent to cover a
purely software and/or firmware implementation, at least one
of the example compliance assessor 302, the example com-
pliance measurer 304, the example results prioritizer 306, the
example compliance database 308, the example policy data-
base 310, the example results database 312, the example
scores database 314, the example priority order database 316
and/or the example reporter 318 is/are hereby expressly

10

15

20

25

30

35

40

45

50

55

60

65

10

defined to include a tangible computer readable storage
device or storage disk such as a memory, a digital versatile
disk (DVD), a compact disk (CD), a Blu-ray disk, etc. storing
the software and/or firmware. Further still, the example com-
pliance monitor 218 of FIG. 2 may include one or more
elements, processes and/or devices in addition to, or instead
of, those illustrated in FIG. 3, and/or may include more than
one of any or all of the illustrated elements, processes and
devices.

A flowchart representative of example machine-readable
instructions for implementing the compliance monitor 218 of
FIGS. 2 and/or 3 is shown in FIG. 4. In this example, the
machine-readable instructions comprise a program for execu-
tion by a processor such as the processor 2412 shown in the
example processor platform 2400 discussed below in connec-
tion with FIG. 24. The program may be embodied in software
stored on a tangible computer readable storage medium such
as a CD-ROM, a floppy disk, a hard drive, a digital versatile
disk (DVD), a Blu-ray disk, or a memory associated with the
processor 2412, but the entire program and/or parts thereof
could alternatively be executed by a device other than the
processor 2412 and/or embodied in firmware or dedicated
hardware. Further, although the example program is
described with reference to the flowchart illustrated in FIG. 4,
many other methods of implementing the example compli-
ance monitor 218 may alternatively be used. For example, the
order of execution of the blocks may be changed, and/or some
of'the blocks described may be changed, eliminated, or com-
bined.

The program of FIG. 4 begins at block 402 when the
example compliance assessor 302 (FIG. 3) assesses compli-
ance of one or more computing resources (e.g., the example
network of storage arrays 102 (FIG. 1), the example comput-
ing servers 104 (FIG. 1), etc.) in the virtual computing envi-
ronment 100 (FIG. 1) witha policy (or policies). For example,
the compliance assessor 302 may receive notification of a
newly generated event, identify the computing resource(s)
associated with the event, test the identified computing
resource(s) for policy compliance, and store the assessment
results (e.g., test satisfied or test unsatisfied) in the results
database 312 (FIG. 3) of the compliance database 308 (FIG.
3). Example processes disclosed herein that may be used to
implement block 402 are described below in connection with
FIGS. 5-7.

At block 404, the example compliance measurer 304 (FIG.
3) determines compliance score(s) of the computing
resource(s) based on compliance measurements of assess-
ment results that report adherence of the computing
resource(s) to the policy (or policies). For example, the com-
pliance measurer 304 may retrieve assessment results from
the results database 312, calculate a normalizing factor based
on a policy, calculate compliance scores for the policy using
the normalizing factor, and store the compliance scores in the
scores database 314 (FIG. 3) of the compliance database 308.
Example processes disclosed herein that may be used to
implement block 404 are described below in connection with
FIGS. 8-14.

At block 406, the example results prioritizer 306 deter-
mines response priorities of assessment results indicative of
compliance failure states (e.g., defects) based on past repair
actions and compliance scores. For example, the results pri-
oritizer 306 may group defects into defect classes based on
the policy that generated the defect, process historical data
associated with the defect classes, and estimate a ranking
(e.g., a priority order) for responding to the defect classes
(e.g., analyzing defects, fixing defects, etc.) based on an
analysis of the historical data, and store the response rankings

US 9,392,022 B2

11

in the priority order database 316 (FIG. 3) of the compliance
database 308. Example methods disclosed herein that may be
used to implement bock 406 are described below in connec-
tion with FIGS. 15-17.

At block 408, the example reporter 318 (FIG. 3) generates
a report based on the compliance policy assessment. For
example, the reporter 318 may retrieve assessment results
from the results database 312, compliance scores from the
scores database 314 and/or response rankings from the prior-
ity order database 316, and generate a report. In some
examples, the report may be presented used a graphical user
interface for user review.

At block 410, the example compliance monitor 218 (FIG.
2) determines whether to continue monitoring compliance of
the virtual computing environment 100. If the compliance
monitor 218 determines to continue monitoring compliance
of the virtual computing environment 100 (e.g., while in
communication with the example virtualization manager 112
(FIG. 1)), control returns to block 402 to assess compliance of
computing resource(s) of the virtual computing environment
100. Otherwise, if, at block 410, the compliance monitor 218
determines not to continue monitoring compliance (e.g., due
to an application/process shutdown event, a computer shut-
down event, etc.), the example process of FIG. 4 ends.

Example methods and apparatus to implement blocks 402,
404, and 406 of FIG. 4 are disclosed herein. For example,
block 402 may be implemented using example methods and
apparatus disclosed herein to perform event-driven compli-
ance assessments of a virtual computing environment, as
discussed below in connection with FIGS. 5-7. Block 404
may be implemented using example methods and apparatus
disclosed herein to measure compliance of a computing
resource and, thus, the affect an event has on policy compli-
ance, as discussed below in connection with FIGS. 8-14.
Block 406 may be implemented using example methods and
apparatus disclosed herein to identify priorities when
responding to assessment results, as discussed below in con-
nection with FIGS. 15-17.

Although blocks 402, 404 and 406 are shown as occurring
in the same process flow in FIG. 4, in other examples, any one
or more of the blocks 402, 404, and 406 may be implemented
independent of the others. For example, block 402 may be
implemented to assess compliance of computing resources
without implementing block 404 to determine compliance
scores as disclosed herein and/or without implementing block
406 to determine response priorities as disclosed herein. In
some examples, block 404 may be implemented to determine
compliance scores without implementing block 402 to assess
compliance of computing resources as disclosed herein and/
or block 406 to determine response priorities as disclosed
herein. In some examples, block 406 may be implemented to
determine response priorities without implementing block
402 to assess compliance of computing resources as disclosed
herein and/or block 404 to determine compliance scores as
disclosed herein.

1. Assessing Compliance

Achieving and maintaining policy-based compliance pre-
sents many challenges within enterprises and organizations
subject to Governance and Regulatory Compliance. For
example, the number of policies maintained at an organiza-
tion for their virtual computing environment contributes to a
growing library of configuration tests. Due to the number of
configuration tests and complexities associated therewith,
organizations may wish to use a management application
within their virtual computing environment to automate com-
pliance assessment.

10

15

20

25

30

35

40

45

50

55

60

65

12

Prior management applications use a polling method to
maintain an acceptable compliance posture. For example, on
a pre-determined basis (e.g., every twenty-four hours), prior
management applications may collect (e.g., poll) the state of
specified computing resources from a virtual computing envi-
ronment as determined by a policy (or policies) and store the
collected information in a centralized repository. Then, the
prior management applications determine the compliance
posture of the virtual computing environment in a batch after
all the information is collected and stored. Delays between
polling may result in missing interim states that were out of
compliance during the interval before polling but changed to
acompliant state through happenstance prior to the polling. In
prior systems, due to the amount of time needed to collect,
store and evaluate the collected information, notifications of
compliance violations are not available for some time (e.g.,
hours) after a change occurs in the virtual computing envi-
ronment. This process of “batch testing,” while sometimes
effective, necessarily creates delays between compliance fail-
ures and notifications to the IT staff, requires specialized
training in the setup and maintenance of the collecting soft-
ware, and requires a carefully orchestrated polling interval.
For example, an overly long polling interval increases the risk
of'missing configuration changes that may affect compliance.
For example, a computing resource may change from an
in-compliance state (e.g., online) to an out-of-compliance
state (e.g., offline), and then back into an in-compliance state
(e.g., online) during a polling interval. As a result, the man-
agement application monitoring compliance of the virtual
computing environment may never recognize that some event
caused a computing resource to fall out-of-compliance, and
thus, cannot take steps to prevent that event from re-occur-
ring. In contrast, having a polling interval that is too short
risks decreasing performance of the virtual computing envi-
ronment due to the large amount of computation and data
collection required for batch testing. For example, processing
resources and storage resources must be used to collect, store
and evaluate the collected information each time the polling
interval ends and a batch testing is performed.

Unlike prior systems that perform batch testing, example
methods and apparatus disclosed herein use event-driven
assessments, which provide updated compliance results in
real-time (or substantially near real-time). In addition, rather
than batch testing potentially all computing resources in the
virtual computing environment, examples disclosed herein
enable limiting testing to those computing resources that are
affected by a configuration change (e.g., an event) on an
occurrence by occurrence basis, thereby resulting in
improved performance of the virtual computing environment
by leaving processing resources and storage resources free to
execute other operations. As a result, unlike prior systems,
which must wait until system-wide batch testing is per-
formed, examples disclosed herein enable determining com-
pliance of a computing resource (e.g., a portion of a system)
immediately upon the occurrence of a configuration change
affecting the computing resource (e.g., affecting a portion of
the system) and/or at least closer in time to the occurrence of
the change (e.g., in a range from zero to ten seconds (e.g.,
three seconds) of detecting an event indicative ofa computing
resource configuration change) without waiting for batch
testing to be performed. That is, whereas batch processing is
triggered by a timer and/or a threshold (e.g., a buffer is X
percent full), compliance processing in the illustrated
example is driven by detection of a computing configuration
change. Thus, unlike batch processing, which depends on an
external measure to trigger analysis, in examples disclosed

US 9,392,022 B2

13

herein, compliance processing is driven by organic configu-
ration events that suggest a compliance defect may have
occurred.

FIG. 5is a block diagram of an example implementation of
the example compliance assessor 302 of the example compli-
ance monitor 218 of FIGS. 2 and 3. In the illustrated example
of FIG. 5, the example compliance assessor 302 includes an
example inventory builder 502, an example compliance tester
504, an example scope tester 506, an example check tester
508, an example event monitor 510, an example resource
identifier 512, an example batch tester 514, an example timer
516 and an example staleness monitor 518.

In the illustrated example of FIG. 5, the example compli-
ance assessor 302 includes the example inventory builder 502
to query the virtual computing environment 100 (FIG. 1) and
register the computing resources (e.g., the example network
of' storage arrays 102 (FIG. 1), the example computing servers
104 (FIG. 1), etc.) within the virtual computing environment
100. In some examples, the inventory builder 502 queries the
virtual computing environment 100 upon installation into the
virtual computing environment 100. For example, the com-
pliance monitor 218 (FIGS. 2 and 3), the example compliance
assessor 302 and/or the example inventory builder 502 may
be installed in the virtual computing environment 100 with
the virtualization manager 112 (FIGS. 1 and 2) or may be
installed at a later time (e.g., via the example plug-in 214
(FIG. 2) or the example third party application 215 (FIG. 2)).

In some examples, the inventory builder 502 registers the
computing resources as an inventory list. As used herein, an
inventory list is a dynamic list of computing resources that
relate to other computing resources. In some examples, the
inventory list may be organized by inventory type. For
example, selecting a cluster list (e.g., via a web access client)
may return identities or indications of all clusters in the virtual
computing environment 100 as well as lists of all resource
types that relate to the cluster (or clusters) selected. Some
example resource types include lists of virtual machines,
databases, servers, networks, etc. In some examples, the
inventory builder 502 retrieves an inventory of resources
(e.g., an inventory list) from another application communi-
cating with the example virtualization manager 112 (FIG. 1).
The inventory builder 502 ofthe illustrated example stores the
inventory list in a database such as the example compliance
database 308 of FIG. 3.

In the illustrated example of FIG. 5, the example compli-
ance assessor 302 includes the example compliance tester
504 to test computing resources against policies to generate
compliance results. As described above, a policy is a collec-
tion of rules containing criteria that are logical expressions of
one or more Boolean-valued criterion. Each criterion is either
atest of a computing resource configuration (e.g., a property)
setting (e.g., logging.enabled="“true”), or is a reference by
name to another criterion, criteria or rule. For example, when
defining a rule, a criterion of the rule may utilize by reference
the same criteria of a second rule.

In the illustrated example of FIG. 5, criteria of a rule
include a scope condition tested by a scope tester 506 and a
check condition tested by a check tester 508. The process of
testing a computing resource for compliance with a policy
using the scope tester 506 and/or the check tester 508 is
referred to as an assessment. Thus, when the example com-
pliance tester 504 receives a message to test a computing
resource (e.g., from the example inventory builder 502, the
example resource identifier 514, etc.), the compliance tester
504 accesses the example policy database 310 (FIG. 3) to
retrieve a policy that includes one or more policy rules (some-
times referred to herein as “rules”).

20

25

30

40

45

55

14

While a policy applies to an inventory of computing
resources, a rule may be applicable to a subset of the inventory
of computing resources. Thus, when testing the computing
resource against the policy, a rule scope condition checked by
the scope tester 506 determines whether a rule applies to the
computing resource. For example, a rule may apply only to a
certain operating system (e.g., LINUX operating system,
etc.). Thus, those computing resources that do not execute
that operating system fail the rule scope condition. In the
illustrated example, when the scope tester 506 determines
that a computing resource fails the rule scope condition, the
rule corresponding to the rule scope condition is inapplicable
to that computing resource, and the example compliance
tester 504 continues assessment with the next rule.

Continuing the above example, the set of computing
resources that do satisfy the scope condition (e.g., that do
execute the specified LINUX operating system) may be
referred to as being within the scope of the rule. In the illus-
trated example, if a computing resource passes (or satisfies) a
rule scope condition performed by the scope tester 506, the
check tester 508 determines whether the computing resource
satisfies a respective rule check condition. In the illustrated
example, a rule check condition may be used to compare a
configuration setting (e.g., a property) of a computing
resource to a value required by the rule check condition for
that computing resource. If the configuration setting value of
the computing resource satisfies the check condition, the
check tester 508 determines that the computing resource
passes (or satisfies) the rule check condition. However, if the
computing resource configuration setting value does not sat-
isfy the rule check condition, then the check tester 508 deter-
mines that the computing resource fails (or does not satisfy)
the rule check condition. When a computing resource fails a
rule check condition, a defect is detected.

In the illustrated example of FIG. 5, the example check
tester 508 stores the result of the rule check test in a database
such as the example results database 312 of FIG. 3. In some
examples, the check tester 508 appends a timestamp to the
result when storing the result in the results database 312.
Thus, for example, a results entry in the results database 312
may include a computing resource identifier (identifying the
computing resource tested), a rule identifier (identifying the
rule and the policy tested), a result of the policy test, the
results of the scope tester 506 on each scope condition tested
by the scope tester 506, the results of the check tester 508 on
each rule check condition tested by the check tester 508, the
results of each criterion test, and a timestamp.

In the illustrated example of FIG. 5, the example compli-
ance assessor 302 includes the example event monitor 510 to
detect newly generated events in the virtual computing envi-
ronment 100. In some examples, the event monitor 510 may
receive messages from the virtualization manager 112 (FIG.
1) when the state of a computing resource changes. For
example, an application in the core services controller 216
(FIG. 2) may publish a list (sometimes referred to as a “feed”
or “stream” (e.g., an events stream)) of configuration events
that affect the virtual computing environment 100 (e.g., via a
web feed such as an Atom feed, a Rich Site Summary (RSS)
feed, etc.). In some such examples, the event monitor 510 may
subscribe to the feed.

In some examples, the event monitor 510 may use compo-
nents of one or more kernels included in the virtual computing
environment 100 to generate events. As discussed above in
connection with the example virtual machines 110 (FIG. 1),
each virtual machine 110 may include an operating system
having an operating system kernel. As a result, the event
monitor 510 may subscribe to a different operating system

US 9,392,022 B2

15

kernel for each of the different operating systems operating
on the virtual machines 110. For example, the event monitor
510 may generate an event based on a change indication
received from an Inotify subsystem or a FileSystem Watcher
subsystem. Inotify is a Linux kernel subsystem that notifies
subscribed applications of changes to a file system via, for
example, a web feed (or an events stream). Similarly, File-
System Watcher is a .NET class subsystem that enables an
application (e.g., the example event monitor 510) to subscribe
to file system events. Upon receiving a notification of a newly
generated event via a web feed (or an events stream), the
example event monitor 510 outputs a notification message
identifying the event via, for example, an events stream.

In the illustrated example of FIG. 5, the compliance asses-
sor 302 includes the example resource identifier 512 to iden-
tify one or more computing resources associated with a
detected event. For example, the resource identifier 512 of the
illustrated example parses the notification message retrieved
from the example event monitor 510 to identify one or more
computing resources. In some examples, the resource identi-
fier 510 may identify additional information regarding the
computing resources such as the new state of the computing
resources, other computing resources related to the event-
associated computing resources (e.g., via the inventory list
generated by the inventory builder 502), etc. In the illustrated
example of FIG. 5, the resource identifier 512 provides the
identified information (e.g., the event-associated computing
resources, compliance states of the new computing resources,
other related computing resources, etc.) in a list to the com-
pliance tester 504 to determine whether the event affected
policy compliance of other computing resources of the virtual
computing environment 100. In this manner, the example
compliance assessor 302 assesses compliance of computing
resources of the virtual computing environment 100 with a
compliance policy (or policies) in response to detecting an
event and without waiting for batch testing of the computing
resources to be performed by, for example, the batch tester
514.

In the illustrated example of FIG. 5, the compliance asses-
sor 302 includes the staleness monitor 518 to identify com-
puting resource(s) that have not been assessed in a pre-deter-
mined amount of time (e.g., twenty-four hours). For example,
the staleness monitor 518 may periodically (e.g., every five
minutes) check timestamps associated with resource assess-
ments to determine if any computing resources have not been
assessed within a threshold duration (e.g., in a pre-determined
amount of time) and, thus, have stale assessments (e.g., out-
dated assessments or assessments that may no longer be
valid). In some examples, an assessment becomes stale when
a subsequent assessment (e.g., an event-associated assess-
ment, a batch test, etc.) has not been performed on the corre-
sponding computing resource in a pre-determined amount of
time. In the illustrated example of FIG. 5, when the staleness
monitor 518 determines an assessment to be stale, the stale-
ness monitor 518 provides an identity of the corresponding
resource to the compliance tester 504 to test the resource
against policies to generate a new (e.g., fresh) assessment
result for the resource. In some such examples, the events
monitor 519 may include an indication that the staleness-
related events are lower priority relative to the event-associ-
ated events, thereby allowing the compliance tester 504 to
perform event-related assessments first, and to perform stale-
ness-related events when processing resources are available.
For example, the staleness monitor 518 may check times-
tamps every five minutes and identify a resource with a stale
assessment (e.g., an assessment performed more than twenty-
four hours prior) having a timestamp indicating that it was

40

45

55

16

performed on Jan. 1, 2013, at 12:05 pm. However, the com-
pliance tester 504 may not have processing resources avail-
able to perform staleness-related assessments until 12:11 pm
that day. In such an example, the staleness monitor 518 may
not identify the assessment performed the prior day at 12:11
pm to be stale until the staleness monitor 518 performs its
12:15 pm check on Jan. 2, 2013. In this manner, the compli-
ance assessor 302 maintains fresh compliance assessments
(e.g., valid or updated compliance assessments) while leaving
processing resources and storage resources free to execute
other operations.

In the illustrated example of FIG. 5, the example compli-
ance assessor 302 includes the example batch tester 514 to
perform batch testing of the virtual computing environment
100. For example, when initiated, the batch tester 514 may
query the virtual computing environment 100, update the
inventory list to include the computing resource states of the
computing resources at that time, and then test each of the
computing resources in the virtual computing environment
100 against a policy (or policies) enforced in the virtual
computing environment 100.

In the illustrated example of FIG. 5, the example compli-
ance assessor 302 includes the example timer 516 to maintain
a regular polling interval between batch tests. For example,
the timer 516 may initiate the batch tester 514 periodically
(e.g., every thirty minutes) to batch test the virtual computing
environment 100. In some examples, the polling interval may
be dynamic and vary based on, for example, a workload. In
this manner, the example compliance assessor 302 may per-
form event-driven assessments (e.g., via the event monitor
510) and regular (e.g., periodic) batch tests (e.g., via the batch
tester 514).

In some examples, the batch tester 514 may be included
with the event monitor 510. In some examples, the batch
tester 514 may be triggered by the event monitor 510. The
example event monitor 510 detects newly generated events in
the virtual computing environment, which enables real-time
(or substantially near real-time) compliance assessment. The
example batch tester 514 performs batch tests of each of the
computing resources of the example virtual computing envi-
ronment 100, including any computing resources that were
recently tested as a result of a detected occurrence of a con-
figuration change, at regular polling intervals. Thus, the com-
bination enables the collected data set to be more robust and
complement each other. For example, the compliance asses-
sor 302 can perform compliance tests that utilize data indi-
cated by events detected by the event monitor 510 and data
collected at intervals by the batch tester 514. In some
examples, the compliance assessor 302 performs compliance
tests that utilize data indicated by events detected by the
example event monitor 510 and related data identified by the
example inventory builder 502 that is unchanged from the
previous batch test.

While an example manner of implementing the compli-
ance assessor 302 of FIG. 3 is illustrated in FIG. 5, one or
more of the elements, processes and/or devices illustrated in
FIG. 5 may be combined, divided, re-arranged, omitted,
eliminated and/or implemented in any other way. Further, the
example inventory builder 502, the example compliance
tester 504, the example scope tester 506, the example check
tester 508, the example event monitor 510, the example
resource identifier 512, the example batch tester 514, the
example timer 516, the example staleness monitor 518 and/
or, more generally, the example compliance assessor 302 of
FIG. 3 may be implemented by hardware, software, firmware
and/or any combination of hardware, software and/or firm-
ware. Thus, for example, any ofthe example inventory builder

US 9,392,022 B2

17

502, the example compliance tester 504, the example scope
tester 506, the example check tester 508, the example event
monitor 510, the example resource identifier 512, the
example batch tester 514, the example timer 516, the example
staleness monitor 518 and/or, more generally, the example
compliance assessor 302 could be implemented by one or
more analog or digital circuit(s), logic circuits, program-
mable processor(s), application specific integrated circuit(s)
(ASIC(s)), programmable logic device(s) (PLD(s)) and/or
field programmable logic device(s) (FPLD(s)). When reading
any of the apparatus or system claims of this patent to cover a
purely software and/or firmware implementation, at least one
of the example inventory builder 502, the example compli-
ance tester 504, the example scope tester 506, the example
check tester 508, the example event monitor 510, the example
resource identifier 512, the example batch tester 514, the
example timer 516 and/or the example staleness monitor 518
is/are hereby expressly defined to include a tangible computer
readable storage device or storage disk such as a memory, a
digital versatile disk (DVD), a compact disk (CD), a Blu-ray
disk, etc. storing the software and/or firmware. Further still,
the example compliance assessor 302 of FIG. 3 may include
one or more elements, processes and/or devices in addition to,
or instead of, those illustrated in FIG. 5, and/or may include
more than one of any or all of the illustrated elements, pro-
cesses and devices.

Flowcharts representative of example machine-readable
instructions for implementing the compliance assessor 302 of
FIGS. 3 and/or 5 are shown in FIGS. 6 and 7. In these
examples, the machine-readable instructions comprise a pro-
gram(s) for execution by a processor such as the processor
2412 shown in the example processor platform 2400 dis-
cussed below in connection with FIG. 24. The program may
be embodied in software stored on a tangible computer read-
able storage medium such as a CD-ROM, a floppy disk, a hard
drive, a digital versatile disk (DVD), a Blu-ray disk, or a
memory associated with the processor 2412, but the entire
program and/or parts thereof could alternatively be executed
by a device other than the processor 2412 and/or embodied in
firmware or dedicated hardware. Further, although the
example program is described with reference to the flow-
charts illustrated in FIGS. 6 and/or 7, many other methods of
implementing the example compliance assessor 302 may
alternatively be used. For example, the order of execution of
the blocks may be changed, and/or some of the blocks
described may be changed, eliminated, or combined.
Although the operations in the flow diagrams of FIGS. 6 and
7 are shown in seriatim, the examples of FIGS. 6 and 7 may
additionally or alternatively be implemented so that one or
more of the operations are performed in parallel with one or
more other ones of the operations.

The program of FIG. 6 begins at block 602 when the
example event monitor 510 (FIG. 5) determines whether a
computing resource in the example virtual computing envi-
ronment 100 (FIG. 1) generated an event. For example, the
event monitor 510 may subscribe to a feed from an applica-
tion in the example core services controller 216 (FIG. 2) and
receive notifications of newly generated events via an event
stream. If, at block 602, the event monitor 510 does receive
notification of a newly generated event, then, at block 604, the
example resource identifier 512 (FIG. 5) identifies a comput-
ing resource(s) (e.g., the example computing server 104 (FIG.
1)) associated with the event. For example, the resource iden-
tifier 512 may parse information in a message from the event
monitor 510 to identify one or more computing resources
associated with the event. In some examples, the resource
identifier 512 queries the inventory builder 502 (FIG. 5) to

10

15

20

25

30

35

40

45

50

55

60

65

18

identify computing resources related to the event-associated
computing resources. In some examples, the resource identi-
fier 512 queries the policy database 310 (FIG. 3) to retrieve a
policy (or policies) enforced in the virtual computing envi-
ronment 100.

At block 606, the example compliance tester 504 (FIG. 5)
tests the one or more event-associated computing resources
(and, if applicable, computing resources related to the event-
associated computing resources) against a policy identified
by the resource identifier 512, as described in greater detail
below in connection with FIG. 7. For example, the compli-
ance tester 504 may compare a computing resource state
against a rule check condition of a policy rule and store the
result of the comparison in the example results database 312
(FIG. 3). At block 608, the compliance assessor 302 deter-
mines whether to continue performing compliance assess-
ments. For example, the compliance assessor 302 (FIGS. 3
and/or 5) may stop performing compliance assessments dur-
ing a power outage. In some such examples, the example
process of FIG. 6 ends. Otherwise control returns to block 602
to determine whether a computing resource in the example
virtual computing environment 100 generated an event.

Returning to block 602, if the event monitor 510 does not
receive notification of a newly generated event, control
advances to block 610, at which the example staleness moni-
tor 518 (FIG. 5) determines whether the virtual computing
environment 100 includes computing resource(s) that have
not been assessed within a threshold duration (e.g., twenty-
four hours). For example, the staleness monitor 518 may
parse through timestamps associated with past assessments
from the example results database 312 and determine any
computing resources with assessments older than twenty-
four hours. If, at block 610, the staleness monitor 518 iden-
tifies stale assessments, then, at block 612, the example stale-
ness monitor 518 identifies the computing resource(s)
corresponding to the stale assessments. For example, the
staleness monitor 518 includes identifiers of the identified
resources in a list to the compliance tester 504. In some
examples, the staleness monitor 518 may include a priority
marker with the identified resources indicating that perform-
ing assessments of the identified resources (e.g., staleness-
related assessments) is of lower priority than performing
assessments of event-associated computing resources. Con-
trol then proceeds to block 606 to test compliance of the
computing resources against the policy (or policies) enforced
in the virtual computing environment 100.

Returning to block 610, if the staleness monitor 518 does
not determine any stale assessments, control advances to
block 614, at which the example compliance assessor 302
determines whether to perform batch testing of the virtual
computing environment 100. For example, the timer 516
(FIG. 5) may expire and initiate batch testing processing.
Otherwise, the compliance assessor 302 may be event-driven
and initiate compliance assessments of the virtual computing
environment 100 when an event in the virtual computing
environment 100 is generated (or detected).

If, at block 614, the compliance assessor 302 determines
not to perform batch testing (e.g., the timer 516 does not
indicate that the polling interval expired), then, control
returns to block 602. Otherwise control advances to block
616, at which the batch tester 514 (FIG. 5) collects computing
resource states for all computing resources included in the
virtual computing environment 100. For example, the batch
tester 514 may query the virtual computing environment 100
to retrieve/identify the most recent computing resource states
of the virtual computing environment 100 computing
resources. Thus, in some examples, the batch tester 514 may

US 9,392,022 B2

19

query hundreds of computing resources to collect the com-
puting resource states of the computing resources. At block
618, the batch tester 514 batches the computing resource
states for the virtual computing environment 100 computing
resources. For example, the batch tester 514 may update the
inventory list (stored in the example compliance database 308
(FIG. 3)) to include the most recent computing resource states
of the computing resources. As discussed above, collecting
computing resource states and storing the computing
resource states is costly in terms of processing resources and
storage resources, thereby resulting in inefficient compliance
assessments. Control then proceeds to block 606 to test com-
pliance of the computing resources against the policy (or
policies) enforced in the virtual computing environment 100.

The program of FIG. 7 illustrates an example method of
testing whether a computing resource is in compliance with a
policy enforced in the virtual computing environment 100
(FIG. 1). The example program of FIG. 7 may be used to
implement block 606 of FIG. 6. The program of FIG. 7 begins
at block 702 when the example compliance tester 504 (FIG.
5) selects a computing resource to test. For example, the
compliance tester 504 may select a computing resource from
the list of identified computing resources, as described above
in connection with the resource identifier 512 (FIG. 5). At
block 704, the compliance tester 504 retrieves a policy includ-
ing one or more rules for testing against the computing
resource. For example, the compliance tester 504 may
retrieve the policy from the policy database 310 (FIG. 3). At
block 706, the compliance tester 504 selects one of the one or
more rules to test. At block 708, the compliance tester 504
determines whether the computing resource is within the
scope of the rule. For example, the scope tester 506 (FIG. 5)
tests the computing resource against the scope condition of
the rule. If; at block 708, the scope tester 506 determines that
the computing resource fails the scope condition of the rule,
control proceeds to block 716. Otherwise if the computing
resource satisfies the scope condition of the rule, control
advances to block 710, at which the compliance tester 504
determines whether the computing resource satisfies the rule.
For example, the check tester 508 (FIG. 5) tests the comput-
ing resource state against the check state of the rule. When the
computing resource state is the same as (e.g., matches) the
check state of the rule, the computing resource passes the rule
check condition and, at block 712, the check tester 508 logs
that the computing resource satisfies the rule in the example
results database 312 of FIG. 3. When the computing resource
does not satisfy (e.g., does not match) the rule check condi-
tion, at block 714, the check tester 508 generates a defect
(e.g., a defect result) and the check tester 508 logs the defect
in the results database 312.

After the check tester 508 logs the assessment result in the
results database 312 at block 712 or block 714, or if the
computing resource failed the rule scope condition at block
708, at block 716, the compliance tester 504 determine(s)
whether the policy includes another rule to test. For example,
the compliance tester 504 may determine whether the tested
rule was the last rule in the policy. If, at block 716, the
compliance tester 504 determines the policy includes another
rule to test, control returns to block 706 to test a new rule
against the computing resource.

Otherwise, if, at block 716, the compliance tester 504
determines that the last rule in the policy was tested, then, at
block 718, the compliance tester 504 determines whether
another policy is enforced on the computing resource. For
example, the compliance tester 504 may query the policy
database 312 for another policy. If the policy database 512
indicates that there is another rule to test, then control returns

20

40

45

50

60

20

to block 704 to retrieve another policy from the policy data-
base 312. Otherwise, if the policy database 312 indicates that
there is not another policy to test (e.g., the example policy
database 312 returns an empty reply or a null value), then, at
block 720, the compliance tester 504 determines whether
there is another computing resource to test. For example, the
compliance tester 504 may check if the list of computing
resources provided by the resource identifier 514 includes
another computing resource. If, at block 720, the compliance
tester 504 determines that there is another computing
resource to test (e.g., the computing resources list includes a
non-tested computing resource), then control returns to block
702 to select another computing resource to test. Otherwise, if
the program of FIG. 6 is initiated by a newly generated event
or if the compliance tester 504 determines that there is not
another computing resource to test at block 720, then control
returns to a calling function or process such as the example
program of FIG. 6, and the example process of FIG. 7 ends.

II. Measuring Compliance

After a configuration change (or event) is received and
compliance of a corresponding computing resource(s) is
determined, examples disclosed herein may be used to mea-
sure the extent to which the computing resource(s) are adher-
ing to a compliance policy. Such disclosed examples may be
useful to a system administrator managing the virtual com-
puting environment 100 (FIG. 1). For example, if a comput-
ing resource fails a policy, the system administrator may use
examples disclosed herein to assess the degree to which the
computing resource is in compliance (e.g., an in-compliance
amount or a degree of compliance with a policy). Some dis-
closed examples may be used to identify defects for which
quicker responses (e.g., corrections) would be relatively more
beneficial to the virtual computing environment. In addition,
the system administrator may use examples disclosed herein
to measure compliance over time, over a group of computing
resources and/or across a collection of policies.

FIGS. 8A and 8B illustrate an example compliance events
record 800 indicative of compliance states of a computing
resource with respect to different criteria of a policy (P) (e.g.,
OVAL definition CCE-14816-3 or oval:nist.usgcb.rhel:def:
20159). The compliance events record 800 of the illustrated
example includes results of eight criteria of the policy (P). In
the illustrated example, the compliance events record 800
includes compliance failures 802A, 802B, 802C indicating
that the computing resource failed three of the eight criteria
(e.g., marked with an “X” inside a circle). The compliance
events record 800 also includes five compliance successes
804 A, 804B, 804C, 804D, 804EF indicating that the comput-
ing resource passed five of the criteria (e.g., marked with a
check mark).

Some prior compliance measurement tools measure com-
pliance of a policy as a whole. That is, some prior compliance
measurement tools provide only a pass (or satisfied or “17)
indicator or fail (or unsatisfied or “0”) indicator of the com-
puting resource with respect to the policy as a whole (e.g.,
policy compliance failure 806). In such prior compliance
measurement tools, a system administrator is only informed
when the compliance of a computing resource with a policy as
awhole unit changes from compliance success to compliance
failure or from compliance failure to compliance success.
Thus, the system administrator is unaware when an individual
criterion of the policy changes compliance states. For
example, if one of the five compliance successes 804 changes
to a compliance failure 802, and the compliance status corre-
sponding to the whole, unitary policy continues to display an
indicator of only the policy compliance failure 806, the sys-
tem administrator will be aware that the compliance of the

US 9,392,022 B2

21

corresponding computing resource with the policy continues
to be in a fail state, but the system administrator will not be
ableto discern, based on the compliance failure indicator 806,
that the computing resource moved further away from a com-
pliance posture (e.g., the compliance successes of the com-
puting resource decreased from five compliance successes
804 to four compliance successes 804).

Compliance may be measured using numerical values.
Some prior compliance measurement tools measure compli-
ance based on a raw score of, for example, compliance suc-
cesses versus the total tested policy criteria. For example,
prior compliance measurement tools may calculate a score of
“5/8” (e.g., 62.5 percent compliance for the five compliance
successes 804 of the eight total tested policy criteria of FIGS.
8A and 8B) based on the compliance events record 800 of
FIGS. 8A and 8B. While this may be true as a raw score, it
lacks relevance to whether the computing resource is in or out
of compliance. For example, passing all eight of the criteria
noted in the compliance events record 800 may not be neces-
sary to be in compliance with the policy (P). In the example of
FIGS. 8A and 8B, the compliance failure 802C causes the
policy compliance failure 806, while the compliance failures
802A, 802B are not relevant due to the compliance successes
804A, 804B. As discussed above in connection with compli-
ance policies, a policy may be expressed as a logical combi-
nation of one or more criteria. Equation 1 below is an example
logical representation of an example policy (P) illustrated in
FIGS. 8A and 8B.

P=(11 V|[Vo)&&(1 V3| V) &&V 588 V(& & V& & Vg Equation 1

In Equation 1 above, the policy (P) is a logical combination
of criteria. Each criterion is a Boolean-valued check (e.g. V)
or logical negation of a check (e.g. = V). In Equation 1, “||”
is the logical OR operator, and “&&” is the logical AND
operator. Example Equation 1 represents a policy compliance
test that defines a threshold for policy compliance (e.g., a
compliance posture). Thus, using Equation 1 above in con-
nection with the compliance events record 800 of FIGS. 8A
and 8B, a computing resource tested against the policy (P)
need only satisfy six of the eight criteria to pass. For example,
the computing resource must only comply with criterion
(= V) or comply with criterion (V,), must comply with cri-
terion (= V) or comply with criterion (V,), and must comply
with each of criterion (Vs, V¢, V,, and V). However, while
prior compliance measurement tools that use a raw score of
“6/8” may determine that the computing resource fails the
policy (P), the raw score of “6/8” does not agree with such a
compliance failure. Furthermore, in some examples, a com-
puting resource may be in compliance with a policy and never
have a raw score of “8/8.” For example, the check (V) of the
policy (P) may determine whether the computing resource is
operating a 32-bit architecture while the check (V) of the
policy (P) may determine whether the computing resource is
operating a 64-bit architecture. In some such examples, while
the computing resource may comply with the policy (P) by
operating either the 32-bit architecture or the 64-bit architec-
ture, the computing resource does not operate both architec-
tures simultaneously (e.g., at the same time or substantially
near the same time) and, thus, cannot achieve a raw score of
“8/8”

Accordingly, example methods and apparatus disclosed
herein enable measuring compliance based on the compli-
ance state of individual criterion of a policy. For example, as
explained in connection with example Equation 1 above the
example compliance events record 800 of FIGS. 8A and 8B,
examples disclosed herein process the properties of the policy
(P) so that if a logically OR’ed criterion (e.g., the criterion

30

40

45

60

22

(= V3)) is satisfied, the first (satisfied) logically OR’ed crite-
rion (- V;) is processed as a necessary criterion and the
second logically OR’ed criterion (e.g., the criterion (V,,)) is
processed as an unnecessary criterion. In some such
examples, changes to the compliance state of the second
logically OR’ed criterion (V,) are treated as irrelevant in
measuring compliance of the computing resource. That is,
when the first logically OR’ed criterion (= V) is satisfied
(e.g., marked by a compliance success 804B), a change in the
compliance state of the second logically OR’ed criterion (V,,)
is irrelevant in determining whether the computing resource
is in compliance with the policy (P). Thus, unlike prior sys-
tems, examples disclosed herein enable recognizing neces-
sary criteria and/or unnecessary criteria so that a compliance
score increases as necessary criteria are satisfied, decreases as
necessary criteria become unsatisfied and is unaffected by
configuration changes that are neutral (e.g., unnecessary cri-
teria change values and/or no-longer necessary criteria
change values).

Compliance scores from compliance measurements of dif-
ferent policies may not always be meaningfully comparable
to one another because policies often originate from different
sources (e.g., different publishers) that use different policy
criteria or compliance success standards. For example, acom-
puting resource may be required to comply with a first policy
including four criteria provided by a policy publishing
source, and may be subject to also comply with a second
policy including one hundred criteria provided by the same or
different policy publishing source. Thus, each policy effec-
tively provides a different level of difficulty for achieving
compliance and, thus, a different compliance metric for mea-
suring compliance.

Examples disclosed herein enable calculating a normalized
(or standardized) compliance score for each policy based on
the properties of the policy. In this manner, normalized com-
pliance scores across different policies are meaningfully
comparable to one another. The properties of a policy include
the number of criteria (V,,) in the policy, the relationship
between criteria (e.g., the logical representation of the policy
including the logical AND operator, the logical OR operator,
the logical NOT operator, etc.), and the compliance state (e.g.,
compliance failure or compliance success) of each of the
criteria (V,,). Examples disclosed herein use the properties of
the policy to calculate a surprisal value of the policy, which
may then be used to calculate a normalized compliance score
for a computing resource against the policy. The surprisal
value (or uncertainty) is defined herein as the amount of
information expressed by a particular outcome, given a dis-
tribution of outcomes and their probabilities.

To illustrate, consider a dice-rolling policy (P..) where
two dice (d,, d,) are rolled and the policy is satisfied when the
sum of the two rolled dice is to equal eleven. Equation 2 below
is a logical representation of the policy (P...).

Pi..=(d =5&&d,=6)||(d=6&&d>=5) Equation 2

In Equation 2 above, the surprisal value for the policy
(P) may be calculated based on the number of combina-
tions of two dice rolls that sum to eleven. Thus, the surprisal
value corresponds to the amount of uncertainty that some-
thing will happen given the properties of the system. For
example, in Equation 2 above, the surprisal value depends on
the number of criteria (e.g., two dice rolled), the logical
relationship between the criteria (e.g., the sum of the two
dice), and the values of the two dice. Thus, in Equation 2
above, the surprisal value is different when the result of no
dice is known, when the result of one of the two dice is known,
and when the result of both dice are known. That is, the

US 9,392,022 B2

23

amount of uncertainty in satisfying the policy (Pj..)
decreases when the result of one die is known, and decreases
again (e.g., zero uncertainty) when the results of the two dice
are known. The surprisal value calculated before any infor-
mation is known may be referred to as the maximum surprisal
(oruncertainty) of the policy (P ...). The surprisal value when
one of the dice values is known may be referred to as the
remaining surprisal value of the policy (P,..) given the
amount of information known (e.g., the first die result). The
difference in values between the maximum surprisal value
and the remaining surprisal value after information is known
(e.g., the first die result) corresponds to the amount of sur-
prisal lost and, thus, may be referred to as information gain.
The ratio of the information gain to the maximum surprisal
value may be referred to as the compliance score for the
policy (P,.,) given the information known.

Thus, examples disclosed herein calculate a compliance
score using the properties of the policy. As a result, examples
disclosed herein enable comparing and/or combining com-
pliance scores with one another. For example, the compliance
score can be combined over time and/or over a group of
computing resources that are measured against the same
policy because the compliance score is with respect to the
same maximum surprisal. In addition, compliance scores
over policies may be combined by using the ratio of the
maximum surprisal of each policy. As a result, the compliance
posture of a computing resource may be evaluated based on
the combined measured compliance of a group of computing
resources, the combined measured compliance of a comput-
ing resource over time and/or the combined measured com-
pliance of the computing resource against two or more poli-
cies.

Moreover, when calculating a compliance score, examples
disclosed herein do not depend on the type of policy (e.g., a
vulnerability policy, a compliance policy, etc.) being
enforced. In addition, some examples disclosed herein may
be used to calculate a compliance score for a policy that does
not enable automated compliance assessments (e.g., the
policy rules are not machine-readable), but that includes sat-
isfied/unsatisfied (e.g., pass/fail, true/false, etc.) truth-values
to perform a manual compliance assessment. For example, a
compliance score may still be calculated for a policy encoded
in the Open Checklist Interactive Language (OCIL) where the
results are human answers to a questionnaire. That is,
examples disclosed herein may calculate a compliance score
for any policy that can be represented as a Boolean expres-
sion. For example, examples disclosed herein may calculate a
compliance score for reports generated by methods that did
not use example scoring processes disclosed herein (e.g., a
different scoring process, a legacy scoring process, etc.).
Thus, in some examples, examples disclosed herein retroac-
tively calculate a compliance score for a legacy scoring pro-
cess. In some examples, compliance scores for reports are
generated using a first compliance score calculated by a first
scoring technique (e.g., example scoring processes disclosed
herein) and one or more other scoring techniques different
from the first scoring technique.

Some prior compliance measurement systems generate
compliance reports based on assessment results of computing
resources of the virtual computing environment 100 (FIG. 1)
against a policy. A compliance report may provide informa-
tion regarding, for example, the compliance posture of a
computing resource when the computing resource is tested
against the policy. However, prior compliance measurement
systems generate the compliance reports based on the polling
(e.g., sampling) and subsequent assessment of computing
resources at discrete moments in time separated by significant

20

25

30

40

45

50

24

time intervals. That is, prior compliance measurement sys-
tems may perform compliance assessments by polling com-
puting resources periodically (e.g., every thirty minutes) and,
thereby, generate compliance reports that measure compli-
ance periodically (e.g., every thirty minutes). As a result,
changes in the compliance state of' a computing resource that
occur between compliance assessments (e.g., between the
periodic polling of computing resources) are not reported in
the compliance report.

Unlike prior systems, examples disclosed herein enable
streaming compliance measurements continuously. For
example, rather than measuring compliance periodically as a
batch operation that polls multiple computing resources in a
virtual computing environment at the same time to determine
configuration change events, examples disclosed here may
measure on a per-event basis as configuration changes occur
in a virtual computing environment, as discussed in greater
detail above in connection with the example compliance
assessor 302 (FIG. 3). As a result, when comparing compli-
ance measurements over time, compliance measurements
disclosed herein correspond to a trace of compliance mea-
surements (e.g., a stream of continuous compliance measure-
ments) rather than discrete (or impulse) values.

FIG. 9 is a block diagram of an example implementation of
the example compliance measurer 304 of the example com-
pliance monitor 218 of FIGS. 2 and 3 to measure compliance.
In the illustrated example of FIG. 9, the compliance measurer
304 includes an example results monitor 902, an example
score calculator 904, an example aggregator 912, and an
example score comparator 920. In the illustrated example, the
score calculator 904 includes an example surprisal calculator
906, an example information gain calculator 908 and an
example scorer 910. The aggregator 912 of the illustrated
example includes an example group aggregator 914, an
example temporal aggregator 916, and an example policy
aggregator 918.

In the illustrated example of FIG. 9, the compliance mea-
surer 304 includes the results monitor 902 to monitor changes
to assessment results. For example, the results monitor 902
may receive a notification from the example compliance
assessor 302 (FIGS. 3 and 5) when the compliance assessor
302 updates an assessment result in the example results data-
base 312 (FIG. 3). For example, an assessment result may
change from satisfied to fails (or unsatisfied). In some
examples, the results monitor 902 may monitor incoming
data to the results database 312 to determine if the results
database 312 is being updated with a new result. When the
results monitor 902 receives notification of a new result (e.g.,
viathe example compliance assessor 302), the results monitor
902 determines the computing resource(s) affected by the
results change and initiates the score calculator 904 to calcu-
late a compliance score for the computing resource in accor-
dance with a policy (or policies).

In the illustrated example of FIG. 9, the compliance mea-
surer 304 includes the example score calculator 904 to calcu-
late a compliance score of a computing resource for a policy.
For example, the score calculator 904 may retrieve a policy
from the example policy database 310 (FIG. 3) that is
enforced against the computing resource. The compliance
score (or measure of compliance) may be used to determine
the amount of compliance, may be combined with other com-
pliance scores (e.g., over time, over groups of computing
resources and/or with other policies), and/or may be used to
compare two or more compliance scores.

The score calculator 904 of the illustrated example uses
properties of a policy to calculate a maximum surprisal for the
policy and a remaining surprisal value of the policy for a

US 9,392,022 B2

25

computing resource. The maximum surprisal varies for each
policy and depends on the properties of the policy. For
example, the number of criteria and/or the logical structure of
a policy may influence the maximum surprisal. Thus, the
remaining surprisal varies for each resource with respect to a
policy and may depend on the properties of the policy and/or
the properties of the resource (e.g., the number of criteria, the
logical structure of the policy, the truth values (e.g., true or
false) resulting from testing the resource against the policy
criterion, etc.). The example score calculator 904 uses the
difference between the maximum surprisal and remaining
surprisal values (e.g., the information gain) as the measure of
the amount of compliance to the policy by the computing
resource. In the illustrated example, the score calculator 904
normalizes the information gain by dividing it by the maxi-
mum surprisal to calculate a compliance score of the policy
for the computing resource. In addition, in some examples,
the example score calculator 904 appends a timestamp to the
compliance score representative of when the compliance
score was calculated. In some examples, the score calculator
904 stores the calculated compliance score in the example
scores database 314 of FIG.

In the illustrated example of FIG. 9, the score calculator
904 includes the example surprisal calculator 906 to calculate
surprisal values. For example, the surprisal calculator 906
may use Equation 3a below to calculate the maximum sur-
prisal (I(P10)) value of a policy (P). The surprisal value of
satisfying a policy (P) is measured in criteria bits (sometimes
referred to herein as “crits” or “bits™). A criteria bit is a unit of
information when measuring a surprisal value in a binomial
system (e.g., true/false, heads/tails, on/off, etc.)

2HP)
=1 R
8 SarCount(P)

Equation 3a
1(P10)

S#(Pla)
logy ——
08 SarCouni(P | a)

Equation 3b
I(Pla)=

In Equation 3a above, the maximum surprisal (I(P10)) is the
surprisal value of the policy (P) given no (e.g., Zero) amount
of information regarding the compliance status of any of the
criteria of the policy. The SatCount(P) is the number of com-
binations of criteria truth-values that satisfy the policy (P),
and the value #(P) is the number of distinct checks in the
policy (P). For example, referring back to the policy (P)
defined in Equation 1 above and referring to FIG. 25A, the
value #(P) is eight (e.g., (V4, . . . V,)) and the SatCount(P) is
nine since there are nine rows satisfying the policy (P) in FI1G.
25A (i.e., where the value of the policy (P) is true). There are
256 rows (i.e., 2%=2%) in FIG. 25A, one for each combina-
tion of the truth-values of the eight checks (V, to V). Thus,
using Equation 3a, the maximum surprisal (I(P10)) for the
policy (P) defined in Equation 1 is equal to 4.83 crits (i.e., log,
28/9). To calculate the amount of remaining surprisal (I(Pla))
for a policy (P) given a computing resource (a), the surprisal
calculator 906 calculates the SatCount(Pla) based on the cri-
teria (V4, ... Vy) satisfied by the computing resource (a) and
uses Equation 3b above to calculate the surprisal of the com-
puting resource (a). For example, referring back to the policy
(P) defined in Equation 1 above and referring to FIG. 25B,
suppose a computing resource (a) satisfies criteria (- V;, V.,
and V), then the value #(Pla) is five (i.e., #(P)-3=8-3) and
the SatCount(Pla) is the number of combinations of truth
values that satisfy the policy (P) chosen from amongst those
that already satisty the criteria (- V|, Vs, and V). Accord-

10

15

20

25

30

35

40

45

50

55

60

65

26

ingly, the SatCount(Pla) is six, and the remaining surprisal
(I(Pla)) for the policy (P) on the computing resource (a) is
2.42 crits (i.e., log, 2°/6).

In the illustrated example of FIG. 9, the score calculator
904 includes the example information gain calculator 908 to
calculate the information gain (or the amount of compliance)
of'a policy for a computing resource. For example, the infor-
mation gain calculator 908 may use Equation 4 below to
calculate the information gain.

G(Pla)=I(P10)-I(Pla) Equation 4

In Equation 4 above, the information gain (G(Pla)) mea-
sures the amount of compliance that the computing resource
(a) has with the policy (P) given the state of the computing
resource (a). Thus, as the number of satisfied criteria in a
policy grows, the information gain increases. Moreover, the
information gain increases because as more of the criteria
truth-values are known (e.g., satisfied or unsatisfied by a
computing resource), the surprisal value of the computing
resource decreases (e.g., there is less uncertainty with
whether the computing resource is able to satisfy the policy).
In addition, in the illustrated example of FIG. 9, if the com-
pliance state for acomputing resource changes (e.g., switches
from in-compliance to out-of-compliance) the cause for the
compliance change can be identified because a change in the
information gain may be attributed to a change in the truth-
value of a criterion. Thus, credit or blame can be directly
assigned to events (e.g., configuration changes).

In the illustrated example of FIG. 9, the score calculator
904 includes the example scorer 910 to calculate a compli-
ance score of a policy for a computing resource. For example,
the scorer 910 may use Equation 5 below to calculate a
compliance score.

G(Pla)
1(P10)

Equation 5

B(P|a)= #100%

In Equation 5 above, the compliance score (B(Pla)) is the
amount that the computing resource (a) is in compliance with
apolicy (P) measured in percentage. In Equation 5 above, the
example scorer 910 divides the information gain (G(Pla)) by
the maximum surprisal (I(P10)) to normalize the information
gain. The example scorer 910 multiplies the result by “100%”
to transform the range of values for the compliance score to
between 0% and 100%.

In the illustrated example of FIG. 9, the compliance mea-
surer 304 includes the aggregator 912 to combine compliance
scores. For example, a system administrator may wish to
know compliance of a policy enforced against the example
computing servers 104 (FIG. 1) of the example virtual com-
puting environment 100 (FIG. 1). The example group aggre-
gator 914 uses Equation 6 below to calculate a combined
compliance score (e.g., a group-aggregated compliance
score) for the retrieved compliance scores.

Equation 6

> GPlay

B(P|{ay, ...ay}) =

nxI(P|0)
In Equation 6 above, the combined compliance score (B
(PH{a,, .. .a,}))is the arithmetic average compliance score

for the group of computing resources ({a,, . . . a,,}) against the
policy (P). For example, the aggregator 912 and/or the group
aggregator 914 may retrieve the compliance score for each of
the computing resources in the group from the example scores

US 9,392,022 B2

27

database 314. The combined compliance score for the group
of computing resources is then calculated by taking the aver-
age of the retrieved compliance scores (e.g., summing the
compliance scores and dividing by the number of computing
resources). As the compliance scores for each of the comput-
ing resources is calculated with respect to the same maximum
surprisal value, the example group aggregator 914 may take
the arithmetic average of the compliance scores for the group
of computing resources to calculate the combined compli-
ance score (e.g., the group-aggregated compliance score) for
the group of computing resources against the policy.

In the illustrated example of FIG. 9, the temporal aggrega-
tor 916 ofthe aggregator 912 combines compliance scores for
a computing resource over time. For example, a system
administrator may want to know how a computing resource
measured in compliance over a period such as a week or a
historical range (e.g., Q1 of 2012). In some such examples,
the temporal aggregator 916 uses either Equation 7 below or
Equation 8 below to calculate a combined compliance score
(e.g., a temporally-aggregated compliance score) for a com-
puting resource over a group of discrete moments or over an
interval, respectively.

Z G(P|a@r) Equation 7
t
B(Pl{a@tl,...a@tm})_m,
rin {y, ... 0y}
Equation 8
G(P|a@ndr quation
B(P|ae[t, 1)) = ~————,
(Pleel. wh = =510
rin [1y, 1]

In Equation 7 above, the combined compliance score
BPH{a@t,, ... a@t,,}))is calculated for a group of discrete
moments ({t; . . . t,,}). In Equation 8 above, the combined
compliance score (B(Pla@lt,, t,,])) is calculated over an
interval ([t,, t,,]). In some examples, the example aggregator
912 and/or the temporal aggregator 916 may retrieve compli-
ance scores for the computing resource (a) over a period from
the example scores database 314. When the compliance
scores are of discrete moments, the example temporal aggre-
gator 916 uses Equation 7 above to calculate the combined
compliance score (e.g., the temporally-aggregated compli-
ance score) of the computing resource over time. For
example, the temporal aggregator 916 may retrieve compli-
ance scores from the example scores database 314 corre-
sponding to assessment results calculated during batch test-
ing (e.g., on the first day of every month of the year). In some
such examples, the assessment results are stored in the
example results database 312 (FIG. 3) periodically (e.g.,
every twenty-four hours), and, thus, the compliance scores
retrieved from the scores database 314 correspond to discrete
moments (e.g., every thirty days). In contrast, if the compli-
ance scores are determined continuously over time, then the
example temporal aggregator 916 uses Equation 8 above to
calculate the combined compliance score of the computing
resource over time. For example, the assessment results
stored in the results database 312 may correspond to event-
driven assessments. In some such examples, assessment
results are stored in the results database 312 when an event is
recorded. Thus, the corresponding compliance scores
retrieved from the scores database 314 are continuous (e.g.,
the compliance score at a time (t,) is the same as at a previous
time (t,_,) until an event is detected).

10

15

20

25

30

35

40

45

50

55

60

65

28

In the illustrated example of FIG. 9, the policy aggregator
918 of the aggregator 912 combines compliance scores for a
computing resource over a collection of policies. For
example, a collection of policies (P, to P,) may be enforced
on a computing resource (a). When calculating a combined
compliance score for the computing resource (a) against the
collection of policies, the combined compliance score is not
calculated by arithmetically averaging the individual compli-
ance scores ({B(P, la), . . . B(P,la)}) if the compliance scores
are normalized by different maximum surprisals
({1(P,la), ..., I(P,la)}). For example, consider a computing
resource (a) that is 99% in-compliance against a first policy
(P,) (i.e., compliance score (B(P, 1a))=99%) with a maximum
surprisal of two crits and that the computing resource (a) is
50% in-compliance against a second policy (P,) (i.e., com-
pliance score (B(P,la))=49%) with a maximum surprisal of
100 crits. Calculating the combined compliance score using
the arithmetic average would lead a system administrator to
believe that the computing resource (a) is 74% (i.e., (99+49)/
2) in-compliance with the policies (P, P,). However, the
example policy aggregator 918 calculates the combined com-
pliance score by summing the independent gains for the poli-
cies (P,, P,) and then renormalizing the compliance score.
Thus, as disclosed in greater detail below in connection with
Equations 9-14, the example policy aggregator 918 calculates
a combined compliance score for the computing resource (a)
of 50% (i.e., (0.99%2)/(100+2)+(0.49%100)/(100+2)).

As described above, policies may include a large number of
criteria. As a result, when combining compliance scores for a
computing resource over a collection of policies, some poli-
cies may overlap (e.g., share criteria). In some such examples,
the criteria dependencies may be accounted for by calculating
the combined compliance score as the conjunction of the
collection of policies (e.g., the set of the criteria). In the
illustrated example, the policy aggregator 918 uses Equations
9-11 below to calculate a combined compliance score (e.g., a
policy-aggregated compliance score) for a computing
resource against a collection of policies (P, to P,,) that include
shared criteria.

IPU...P =P && ...P,|a) Equation 9

GPLU..Pla=IP U ..P|O)-IPU..P &) Equation 10

GP U ... P la
P . P 1O)

Equation 11
BPUJ..P,la)=

In Equation 9 above, the combined surprisal value
AP,U . .. P,la)) is calculated as the surprisal of the single
policy (P,&&P, . .. P,) formed from the conjunction (e.g., the
logical AND operator) of the collection of policies ({P,, . . .
P _}). The example policy aggregator 918 uses Equation 10
above to calculate the information gain (G(P,U .. . P, la)) for
the computing resource (a) against the collection of policies
(P, to P,). The example policy aggregator 918 uses Equation
11 above to calculate the combined compliance score
(B(P,U . ..P,la)) (e.g., the policy-aggregated compliance
score) for the computing resource (a) against the collection of
policies ({P,, ... P, }). Thus, calculating a combined compli-
ance score for a collection of policies that share some criteria
is similar to calculating a compliance score for a single policy
formed from the collection of policies ({P;, . .. P,}). As a
result, the surprisal values, the information gain, and the
compliance scores for the collection of policies may be cal-
culated using the same approach as described above in con-

US 9,392,022 B2

29

nection with Equations 3-5, but with a larger policy formed
from the conjunction of the policies of the collection of poli-
cies.

While Equations 9-11 above assume the collection of poli-
cies ({P,, ... P,}) share (e.g., overlap with) some criteria, the
example policy aggregator 918 may also calculate the com-
bined compliance score for a collection of policies as if the
policies are independent from each other, even if the policies
do share criteria. In some such examples, the policy aggrega-
tor 918 uses Equations 12-14 below to calculate a combined
compliance score (e.g., a policy-aggregated compliance
score) for a computing resource over a collection of policies.

0P . P @)=) 1P @) Equation 12
G{Py, ... P} @) =1({Py, ... P} | 0) = I({Py, ... P} | @) Equation 13

G{Py, ... Py} a)
I4P1, ... P} O)

Equation 14
B(Py, ... Pl a) =

When the collection of policies are independent of each
other (or assumed to be independent of each other), the
example policy aggregator 918 calculates the combined sur-
prisal value (I({P,, . . . P,}la)) by summing the surprisal
values for each of the policies in the collection of policies. As
a result, the policy aggregator 918 uses Equation 12 above to
calculate the maximum surprisal (I(P,10)) for each of the
policies (P,) of the collection of policies ({P,, . .. P,}) and
sums the individual maximum surprisals. The example policy
aggregator 918 also uses Equation 12 above to also calculate
the remaining surprisal value (I(P,la)) for the computing
resource (a) for each of the policies (P,) of the collection of
policies ({P,, . . . P,,}) and sums the individual remaining
surprisal values. Once the combined surprisal values are cal-
culated, the example policy aggregator 918 calculates the
compliance score using the same approach as described
above in connection with Equations 4 and 5. That is, the
example policy aggregator 918 uses Equation 13 above to
calculate the information gain (G({P,, . . . P, }la)) for the
computing resource (a) against the collection of policies
({P,, . . . P,}). The example policy aggregator 918 uses
Bquation 14 to calculate the combined score (B({Py, . . .
P,}1a)) (e.g., the policy-aggregated compliance score) for the
computing resource (a) against the collection of policies
(P, ...PDH.

In some examples, a combined compliance score for poli-
cies that overlap and a combined compliance score for poli-
cies that are independent may be related by the mutual sur-
prisal between the policies. For example, Equation 15 below
may be used to relate dependent and independent combined
compliance scores of two policies (P,, P,) against the com-
puting resource (a).

(P \UPy|a)=I(P:, Py} | @)+ (P, Py | @) Equation 15

=I({Py, P,}| @) +0 (if P, P, are independent)

In Equation 15 above, the combined surprisal value
(I(P,UP la)) is the conjunction of the two policies (P, P) for
the computing resource (a) and the surprisal (I(P,; P |a)) is the
mutual surprisal between the policies (P,, P,). Thus, if the
policies are independent, then by using Equations 9
and 12 above, it holds that the combined surprisal value

20

45

55

60

30

I(P,UP la)=I({P,, P, }|a) as there is no mutual surprisal and
the surprisal value (I(P; P la)) is equal to zero.

As discussed above, combining compliance scores
depends on the maximum surprisal for the combined policies.
When policies are considered to be of equal priority (even
with unequal maximum surprisals), the example policy
aggregator 918 may use Equation 16 below to calculate the
average combined compliance score.

Equation 16

jet

uBUPL, ... P} @) = % *(]_[B(P;1 a)]“(%)

where:

J ={i:B(P;| a)> 0}, m= |||

In Equation 16 above, the average combined compliance
score (UB({P,, ... P,}1a))is calculated as the expected (m of
n) geometric mean of the (m) non-zero compliance scores in
the set (J) with size (||J]]). Thus, when using Equation 16 above
to calculate an average combined compliance score, the
example policy aggregator 918 removes any bias that may
otherwise occur from the respective policies having different
maximum surprisals (e.g., an inherent bias). In some
examples, a subjective bias may be added to a combined
compliance score by providing a priority value to apolicy. For
example, the priority value may be a numeric factor (k,)
assigned to the policy (P,) (e.g., written as k,P,). In some such
examples, the policy aggregator 918 may use Equation 17
below to calculate an average combined compliance score
where the policies (P,) are assigned a respective bias (k).

Equation 17

Jjed

uB(_JtiPi| @) == *(1—[BP; | a)Akj]A(%)
where:

J:{i:B(P;|a)>0},m:2kj,n:2k;

In Equation 17 above, the bias (k) is the priority of the
respective policy (P,) and the bias (k)) is the priority of the
respective policy (P)) having a non-zero score.

In the illustrated example of FIG. 9, the compliance mea-
surer 304 includes the example score comparator 920 to com-
pare compliance scores. For example, a system administrator
may wish to compare a computing resource (a,) to a group of
computing resources ({a,, . . . a,}) to determine how the
computing resource measures in compliance with respect to
policy (P) and the group of computing resources. In some
such examples, the score comparator 920 retrieves the com-
pliance score (B(Pla,)) for the computing resource (a,) and the
combined compliance score (B(Pl{a,, .. .a,})) for the group
of computing resources ({a,, . . . a, }) from the example scores
database 314. In some examples, the score comparator 920
may initiate the example aggregator 912 to calculate a com-
bined score for the group of computing resources ({a,, . . .
a,}). The example score comparator 920 compares the
retrieved compliance scores (e.g., from the scores database
314 and/or the aggregator 912) and stores the comparison
results (e.g., a value indicative of the difference between the
compliance scores) in the example scores database 314.

While the examples discussed above correspond to mea-
suring compliance of a policy by attempting to satisfy the
criteria of the policy, the example compliance measurer 304
may also calculate alternative measurements. For example, in

US 9,392,022 B2

31

some policies, the criteria may correspond to an undesired
(e.g., pathological) state. That is, rather than measuring com-
pliance, the example compliance measurer 304 may measure
non-compliance of an inverse policy. For example, the
example score calculator 904 may use Equation 18 below to
convert a compliance score of a computing resource (a) on a
policy (P) to the score of the computing resource (a) on the
inverse policy (- P).

B(Pla)=-B(11 Pla) Equation 18

In Equation 18 above, an improving compliance score
occurs by progressing towards 100% on the policy (P). Alter-
natively, an improving compliance score may also occur by
progressing towards —100% on the inverse policy (- P). That
is, the compliance score improves as the computing resource
(a) dissatisfies criteria of the inverse policy (- P). For
example, a policy may require that logging be disabled on a
computing resource. In some such examples, the compliance
score for the computing resource improves when the “loggin-
g.enabled” state of the computing resource is “false.”

As discussed above in connection with surprisal values, the
compliance score is representative of the remaining amount
of uncertainty (e.g., missing information) that a computing
resource can satisfy a policy given the compliance state of the
computing resource. In some examples, Equation 19 below
may be used to define the set of truth-values of criteria (V)
determined by a computing resource (a) on a policy (P).

V, ={V—=1:VeVp&&V(a)} Equation 19

The criteria truth-values that are determined using Equa-
tion 19 above are those that satisfy criteria: the set of criteria
truth-values (V) contains values for the criteria (V) that are
tested by a policy (P) (i.e., VeV,) and are satisfied by a
computing resource (a) (i.e., V(a)). Alternatively, when a
policy corresponds to an inverse policy, Equation 20 below
may be used to define the set of criteria truth-values (V)
determined by a computing resource (a) on a policy (= P).

V = V—=f:VeVp&& V(a)} Equation 20

The criteria truth-values that are determined using Equa-
tion 20 above are those of unsatisfied criteria: the set of
criteria truth-values (V,) contains the criteria (V) that are
tested by a policy (P) (i.e., VeV,) and are unsatisfied by a
computing resource (a) (i.e., = V(a)).

While Equation 19 and Equation 20 above may be used to
calculate the set of determined criteria (V,), the example
score calculator 904 may also presume a value for the set (V)
and use that set to calculate compliance scores for hypotheti-
cal situations (e.g., “what if” compliance scores). For
example, consider Equation 21 below, which is a logical
representation of a policy (P).

P=(V||[V)&&Vs3 Equation 21

In Equation 21 above, the number of criteria is three, the
SatCount(P) is three (e.g., P(V, V,, V,) if (V,—=Ff, V,—t,
Vi—t) or (V,—t, V,—F, Vi—t) or (V,—t, V,—t, V—1))
and the maximum surprisal (I(PI0)) is 1.415 crits. Using
Equations 5 and 21 above, the example score calculator 904
may calculate the compliance score for different sets of cri-
teria compliance states. For example, Table 1 below illus-
trates the effect on the compliance score when some criteria
are considered established (presumed or determined). Each
row illustrates an example of established criteria, the remain-
ing undetermined criteria, the SatCount, and the resulting
compliance score, for the policy in Equation 21 above.

10

15

20

25

30

35

40

45

50

55

60

65

32
TABLE 1

Established Number of Compliance
CriteriaV, Undetermined Criteria SatCount Score
V;—t 2 3 70.7%
V;—t, 1 1 29.3%
V,—=f

Vi —t, 0 0 -100%
V=1,

V,—=f

Vi —t, 0 1 100%
Vo =1,

V=t

When the truth-values of a subset of the criteria (V) is
established by a set (V,), as discussed above in connection
with the example score calculator 904, the maximum sur-
prisal (I(P10)) reflects the size of the policy in crits, while the
information gain (G(PIV,)) measures the portion of the
policy (P) satisfied by the established criteria (V,), and the
compliance score (1-B(PIV,)) is the normalized amount of
non-compliance with the policy (P). In addition, the impact of
a second set of established criteria truth-values (V') to the
policy (P) with respect to the first set of criteria truth-values
(V,) may be represented by Equation 22 below. The percent
difference between the second set of criteria truth-values
(V) and the first set of criteria (V) with respect to the policy
(P) may be represented by Equation 23 below.

Impact=G(PIV,)-G(PIV,) Equation 22

Percent Difference=|B(PIV,)-B(PIV,)|| Equation 23

In some examples, the dependence or independence of a
policy may be determined based on a comparison of the
maximum surprisals of the policies. For example, if Equation
24 below is true, then the two policies (P,, P,) are indepen-
dent. If Equation 25 below is true, then the two policies (P,
P,) are dependent (e.g., overlap). If Equation 26 below is true,
then satisfying policy (P,) is more uncertain (e.g., requires
satisfying more criteria). If Equation 27 below is true, then
satisfying the first policy (P,) subsumes (e.g., includes) the

second policy (P,).
I(P, &8P, |0)=I(P,10)+I(P,0) Equation 24
I(P, &8P, |0)<I(P,10)+I(P,0) Equation 25
I(P10)>I(P,0) Equation 26
I(P,0)=I(P, 10)+I(P,I0) Equation 27

In some examples, Equations 24-27 above are also appli-
cable to rules, as a rule may be considered a mini-policy.

While an example manner of implementing the compli-
ance measurer 304 of FIG. 3 is illustrated in FIG. 9, one or
more of the elements, processes and/or devices illustrated in
FIG. 9 may be combined, divided, re-arranged, omitted,
eliminated and/or implemented in any other way. Further, the
example results monitor 902, the example score calculator
904, the example surprisal calculator 906, the example infor-
mation gain calculator 908, the example scorer 910, the
example aggregator 912, the example group aggregator 914,
the example temporal aggregator 916, the example policy
aggregator 918, the example score comparator 920 and/or,
more generally, the example compliance measurer 304 of
FIG. 3 may be implemented by hardware, software, firmware
and/or any combination of hardware, software and/or firm-
ware. Thus, for example, any of the example results monitor
902, the example score calculator 904, the example surprisal
calculator 906, the example information gain calculator 908,

US 9,392,022 B2

33

the example scorer 910, the example aggregator 912, the
example group aggregator 914, the example temporal aggre-
gator 916, the example policy aggregator 918, the example
score comparator 920 and/or, more generally, the example
compliance measurer 304 could be implemented by one or
more analog or digital circuit(s), logic circuits, program-
mable processor(s), application specific integrated circuit(s)
(ASIC(s)), programmable logic device(s) (PLD(s)) and/or
field programmable logic device(s) (FPLD(s)). When reading
any of the apparatus or system claims of this patent to cover a
purely software and/or firmware implementation, at least one
of the results monitor 902, the example score calculator 904,
the example surprisal calculator 906, the example informa-
tion gain calculator 908, the example scorer 910, the example
aggregator 912, the example group aggregator 914, the
example temporal aggregator 916, the example policy aggre-
gator 918 and/or the example score comparator 920 is/are
hereby expressly defined to include a tangible computer read-
able storage device or storage disk such as a memory, a digital
versatile disk (DVD), a compact disk (CD), a Blu-ray disk,
etc. storing the software and/or firmware. Further still, the
example compliance measurer 304 of FIG. 3 may include one
or more elements, processes and/or devices in addition to, or
instead of, those illustrated in FIG. 9, and/or may include
more than one of any or all of the illustrated elements, pro-
cesses and devices.

Flowcharts representative of example machine-readable
instructions for implementing the compliance measurer 304
of FIGS. 3 and/or 9 are shown in FIGS. 10-14 and 26. In this
example, the machine-readable instructions comprise a pro-
gram for execution by a processor such as the processor 2412
shown in the example processor platform 2400 discussed
below in connection with FIG. 24. The programs may be
embodied in software stored on a tangible computer readable
storage medium such as a CD-ROM, a floppy disk, a hard
drive, a digital versatile disk (DVD), a Blu-ray disk, or a
memory associated with the processor 2412, but the entire
program and/or parts thereof could alternatively be executed
by a device other than the processor 2412 and/or embodied in
firmware or dedicated hardware. Further, although the
example programs are described with reference to the flow-
charts illustrated in FIGS. 10-14 and 26, many other methods
of implementing the example compliance measurer 304 may
alternatively be used. For example, the order of execution of
the blocks may be changed, and/or some of the blocks
described may be changed, eliminated, or combined.
Although the operations in the flow diagrams of FIGS. 10-14
and 26 are shown in seriatim, the examples of FIGS. 10-14
and 26 may additionally or alternatively be implemented so
that one or more of the operations are performed in parallel
with one or more other ones of the operations.

The example program of FIG. 10 begins at block 1002
when the example compliance measurer 304 (FIGS. 3 and 9)
receives a notification for a change in an assessment result.
For example, the results monitor 902 (FIG. 9) may receive a
notification from the example compliance assessor 302 (FIG.
3) or the example results database 312 (FIG. 3) of a change in
an assessment result. In some examples, the change in an
assessment result may correspond to a configuration change
in a computing resource (e.g., the example computing server
104 (FIG. 1)) in the example virtual computing environment
100 (FIG. 1). At block 1004, the example score calculator 904
(FIG. 9) calculates a compliance score. In some examples,
block 1004 is implemented using an example method
described below in connection with FIG. 11.

At block 1006, the compliance measurer 304 determines
whether to combine the calculated compliance score with one

25

30

40

45

65

34

or more compliance scores. For example, the compliance
score calculated in block 1004 may be included with compli-
ance scores for a group of computing resources that are also
subject to compliance policies. If, at block 1006, the example
compliance measurer 304 determines to combine the compli-
ance score calculated at block 1004 with one or more com-
pliance scores, then, at block 1008, the example aggregator
912 (FIG. 9) combines compliance scores over a group of
assets, over time, or over a collection of policies. Example
processes that may be used to implement block 1008 is
described below in connection with FIGS. 12-14. Control
then proceeds to block 1010 to determine whether to compare
compliance scores.

After the aggregator 912 combines compliance scores over
a group of assets, over time, or over a collection of policies at
block 1008, or ifthe compliance measurer 304 determines not
to combine the calculated compliance score at block 1006, at
block 1010, the compliance measurer 304 determines
whether to compare the calculated compliance score with one
or more compliance scores. For example, the compliance
score calculated in block 1004 may be compared to other
scores calculated in block 1004 and/or combined at block
1008.

If, at block 1010, the compliance measurer 304 determines
to compare the calculated compliance score, then, at block
1012, the example score comparator 920 compares compli-
ance scores. For example, the score comparator 920 may
calculate the difference between a first computing resource
compliance score and a second computing resource compli-
ance score. In some examples, the score comparator 920 may
determine whether one compliance score is within a threshold
of a second compliance score. For example, the score com-
parator 920 may determine whether the first computing
resource is operating within a threshold (e.g., a predetermined
threshold such as 5%, a dynamic threshold that changes based
onthetime of day, etc.) of a combined compliance score of the
computing resource over time (e.g., determine whether the
first computing resource is operating within a threshold of its
usual compliance scores). In some examples, the score com-
parator 920 may identify a trend of compliance of the first
computing resource over time based on compliance scores
determined at respective times. In some examples, the score
comparator 920 stores the results of the comparison in the
scores database 314. For example, the score comparison
results may be used to identify moments in time when a
computing resource is not in compliance with a policy. Con-
trol then proceeds to block 1014 to determine whether to
continue measuring compliance.

After the score comparator 920 compares compliance
scores at block 1012, or if the compliance measurer 304
determines not to compare compliance scores at block 1010,
then, at block 1014, the compliance measurer 304 determines
whether to continue measuring compliance. For example, a
compliance assessment process may be stopped, or power to
the compliance measurer 304 may be removed. In some such
examples, the example program of FIG. 10 ends. Otherwise,
if the compliance measurer 304 determines to continue mea-
suring compliance, control returns to block 1002, and the
example compliance measurer 304 continues to measure
compliance of the virtual computing environment 100.

The example method of FIG. 26 determines compliance of
a computing resource when a notification for a change in an
assessment result is not received. For example, the example
method of FIG. 26 may be executed when the example com-
pliance measurer 304 (FIGS. 3 and 9) is measuring compli-
ance but the results monitor 902 (FIG. 9) does not receive a
notification from the example compliance assessor 302 (FIG.

US 9,392,022 B2

35

3) or the example results database 312 (FIG. 3) of a change in
an assessment result. The example method of FIG. 26 may be
used to implement block 404 of FIG. 4. The example method
of FIG. 26 begins at block 2602 when the example score
comparator 920 (FIG. 9) retrieves compliance scores to com-
pare. For example, the score comparator 920 may retrieve one
or more compliance scores calculated at block 1004 (FIG.
10), combined at block 1008 (FIG. 10) and/or compared at
block 1012 (FIG. 10) from the example results database 312.

At block 2604, the compliance measurer 304 determines
whether to combine compliance scores. For example, one of
the retrieved compliance scores may be included in a group of
computing resources that are also subject to compliance poli-
cies. If, at block 2604, the example compliance measurer 304
determines to combine at least one of the retrieved compli-
ance scores at block 2602 with one or more other compliance
scores, then, at block 2606, the example aggregator 912 (FIG.
9) combines the compliance scores over a group of assets,
over time, or over a collection of policies. Example processes
that may be used to implement block 2606 is described below
in connection with FIGS. 12-14. Control then proceeds to
block 2608 to determine whether to compare compliance
scores.

After the aggregator 912 combines compliance scores over
a group of assets, over time, or over a collection of policies at
block 2606, or if the compliance measurer 304 determines not
to combine compliance scores at block 2604, at block 2608,
the compliance measurer 304 determines whether to compare
compliance score(s) with other compliance score(s). For
example, the combined compliance score calculated in block
2606 may be compared to other compliance scores retrieved
in block 2602. Alternatively, if the example compliance mea-
surer 304 determines not to combine compliance scores at
block 2604, for example, the compliance measurer 304 may
determine whether to compare a first compliance score
retrieved in block 2602 to other compliance scores retrieved
in block 2602.

If, at block 2608, the compliance measurer 304 determines
to compare compliance scores, then, at block 2610, the
example score comparator 920 compares compliance scores.
For example, the score comparator 920 may calculate the
difference between a first computing resource compliance
score and a second computing resource compliance score. In
some examples, the score comparator 920 may determine
whether one compliance score is within a threshold of a
second compliance score. For example, the score comparator
920 may determine whether the first computing resource is
operating within a threshold (e.g., a predetermined threshold
such as 5%, a dynamic threshold that changes based on the
time of day, etc.) of a combined compliance score of the
computing resource over time (e.g., determine whether the
first computing resource is operating within a threshold of its
usual compliance scores). In some examples, the score com-
parator 920 may identify a trend of compliance of the first
computing resource over time based on compliance scores
determined at respective times. In some examples, the score
comparator 920 stores the results of the comparison in the
scores database 314. For example, the scored comparison
results may be used to identify moments in time when a
computing resource is not in compliance with a policy. Con-
trol then proceeds to block 2612 to determine whether to
continue measuring compliance.

After the score comparator 920 compares compliance
scores at block 2610, or if the compliance measurer 304
determines not to compare compliance scores at block 2608,
then, at block 2612, the compliance measurer 304 determines
whether to continue measuring compliance. For example, a

10

15

20

25

30

35

40

45

50

55

60

65

36

compliance assessment process may be stopped, or power to
the compliance measurer 304 may be removed. In some such
examples, the example program of FIG. 26 ends. Otherwise,
if the compliance measurer 304 determines to continue mea-
suring compliance, control returns to block 2602, and the
example compliance measurer 304 continues to measure
compliance of the virtual computing environment 100.

The example method of FIG. 11 calculates a compliance
score for a computing resource. For example, a system
administrator may decide to calculate a compliance score for
acomputing resource (a,) (e.g., the example computing server
104 of FIG. 1) of a set of computing resources ({a,, .. .a,,})
against a policy (P,) of a collection of policies ({P,, ... P, }).
The example method of FIG. 11 may be used to implement
block 1004 of FIG. 10. The example method of FIG. 11
begins at block 1102 when the example surprisal calculator
906 (FIG. 9) of the score calculator 904 (FIG. 9) determines
a maximum surprisal value ((I(P,10)) and a remaining sur-
prisal value (I(P,la;)) for a computing resource (a,). For
example, the surprisal calculator 906 may use Equation 3a
above to calculate a maximum surprisal ((I(P,10)) for the
policy (P,). The example surprisal calculator 906 may also use
Equation 3b above to calculate a remaining surprisal value
(I(Pl.laj)) for the computing resource (aj) against the policy
®).

At block 1104, the example information gain calculator
908 (FIG. 9) determines the information gain based on the
calculated surprisal values. For example, the information gain
calculator 908 may use Equation 4 above to measure the
amount of compliance (G(P,la,)) with the policy (P,) given the
configuration state of the computing resource (a,).

Atblock 1106, the example scorer 910 (FIG. 9) determines
a compliance score for the computing resource. For example,
the scorer 910 may use Equation 5 above to calculate a com-
pliance score (B(P,la)) for the computing resource (a,)
against the policy (P,).

At block 1108, the example score calculator 904 deter-
mines whether to determine another compliance score. For
example, the score calculator 904 may determine that the
notification received from the results monitor 902 includes
another computing resource (a;) or may determine that
another policy (P,) is enforced against the computing resource
(a)). If the score calculator 904 determines that there is
another compliance score to calculate, control returns to
block 1102 to calculate new surprisal values. Otherwise, if, at
block 1108, the score calculator 904 determines not to calcu-
late another compliance score, control returns to a calling
function or process such as the example program of FIG. 10,
and the example process of FIG. 11 ends.

The example method of FIG. 12 combines compliance
scores for a group of computing resources against a policy.
The example method of FIG. 12 may be used to implement
block 1010 of FIG. 10. The example method of FIG. 12
begins at block 1202 when the example aggregator 912 (FIG.
9) retrieves compliance scores from the example scores data-
base 314 (FIG. 3). For example, the aggregator 912 may
retrieve compliance scores for ESXi hosts, for virtual
machines, for ESX hosts that are part of a cluster, for physical
computing devices like networking and storage devices, etc.

At block 1204, the example group aggregator 914 (FIG. 9)
sums the information gain (G(P,l{a,, . . . a,})) of the compli-
ance scores for each of the computing resources included in
the group of computing resources ({a,, . . . a,}). In some
examples, the group aggregator 914 may cause the informa-
tion gain calculator 908 (FIG. 9) to calculate an information
gain for each of the computing resources in the group of
computing resources.

US 9,392,022 B2

37

At block 1206, the example group aggregator 914 deter-
mines the combined compliance score for the group of com-
puting resources. For example, the group aggregator 914 may
use Equation 6 above to normalize the summed information
gain (XG(P,la,)) using the maximum surprisal value (I(P,10))
for the policy to calculate the combined compliance score
(B®P,{a,, . . . a,})) for the group of computing resources
({a, . . . a,}). In some examples, the group aggregator 914
may trigger the example surprisal calculator 906 (FIG. 9) to
calculate the maximum surprisal (I(P,10)) for the policy (P,).

At block 1208, the example group aggregator 914 stores
the calculated combined compliance score (e.g., the group-
aggregated compliance score) in the example scores database
312. Control then returns to a calling function or process such
as the example program of FI1G. 10, and the example process
of FIG. 12 ends.

The example method of FIG. 13 combines compliance
scores for a computing resource over time. The example
method of FIG. 13 may be used to implement block 1010 of
FIG. 10. The example method of FIG. 13 begins at block 1302
when the example aggregator 912 (FIG. 9) retrieves compli-
ance scores from the example scores database 314 (FIG. 3).
For example, the aggregator 912 may retrieve compliance
scores for a computing resource (a;) during a past period.

Atblock 1304, the example temporal aggregator 916 (FIG.
9) determines whether the retrieved compliance scores are of
discrete moments or resulting from configuration change
events continuously collected in real-time as configuration
changes occur. For example, the aggregator 912 may retrieve
compliance scores over the course of a week (e.g., a duration
during which continuous monitoring of events is used to
detect events as configuration changes occur), every Monday
at 9:00 AM (e.g., batch polling at discrete moments in time),
etc. If the temporal aggregator 916 determines that the
retrieved compliance scores correspond to configuration
change events of discrete moments at times ({t,, . . . t,,}), at
block 1306, the temporal aggregator 916 sums the informa-
tion gain (G(Pla@t,) forj in (1 .. . m) of the compliance scores
corresponding to a time during which a batch collection pro-
cess was performed. In some examples, the temporal aggre-
gator 916 causes the information gain calculator 908 to cal-
culate an information gain for the computing resource (a) for
a particular time (t;) (e.g., corresponding to each time at
which a batch collection process was performed).

Atblock 1308, the example temporal aggregator 916 deter-
mines the combined compliance score for the computing
resource based on configuration change events. For example,
the temporal aggregator 916 may use Equation 7 above to
normalize the summed information gain (XG(Pla@t,)) using
the maximum surprisal (I(P10)) for the policy (P) to calculate
the combined compliance score (B(Pl{a@t,, . . . a@t,,})) for
the discrete time moments ({t,, . . . t,,}). In some examples,
the temporal aggregator 916 may cause the example surprisal
calculator 906 to calculate the maximum surprisal for the
policy.

Atblock 1310, the example temporal aggregator 916 stores
the calculated combined compliance score (e.g., the tempo-
rally-aggregated compliance score) of the computing
resource (a) over the period ({t; . .. t,,}) in the example scores
database 314.

Referring again to block 1304, if the example temporal
aggregator 916 determines that the retrieved compliance
scores correspond to configuration change events collected
continuously over time (e.g., over a continuous interval of
time[t,t,,]), then, atblock 1312, the temporal aggregator 916
integrates the information gain (G(Pla@t)) of the retrieved
compliance scores for the computing resource (a) over the

10

15

20

25

30

35

40

45

50

55

60

65

38

interval [t,, t,,]. For example, the temporal aggregator 916
may cause the information gain calculator 908 to calculate an
information gain for the computing resource over the duration
of continuously collected configuration change events. In
some examples, the temporal aggregator causes the informa-
tion gain calculator 908 to calculate the information gain at
points of configuration change (e.g., upon change events).
The temporal aggregator 916 may then use Equation 8 above
to normalize the integrated information gain to calculate the
combined compliance score. Control then proceeds to block
1308 to calculate a combined compliance score. For example,
the temporal aggregator 916 may use Equation 8 above to
normalize the integrated information gain to calculate the
combined compliance score (B(Pla@)]t,,t,,])). Atblock 1310,
the example temporal aggregator 916 stores the calculated
combined compliance score of the computing resource (a)
over the period [t,, t,,] in the example scores database 314.
Control then returns to a calling function or process such as
the example program of FIG. 10, and the example process of
FIG. 13 ends.

The example method of FIG. 14 combines compliance
scores for a computing resource over a collection of policies.
The example method of FIG. 14 may be used to implement
block 1010 of FIG. 10. The example method of FIG. 14
begins at block 1402 when the example aggregator 912 (FIG.
9) retrieves compliance scores from the example scores data-
base 314 (FIG. 3). For example, the aggregator 912 may
retrieve compliance scores for a computing resource (a) cal-
culated with respect to policies from a collection of policies
({P,, ... P,}). At block 1404, the example policy aggregator
918 (FIG. 9) determines whether the retrieved compliance
scores are calculated against policies that overlap. For
example, the policies overlap if they have at least one rule in
common (e.g., two policies measuring the same category
such as risk, compliance health, etc.).

If the policy aggregator 918 determines the policies asso-
ciated with the retrieved compliance scores do overlap (e.g.,
share one or more criteria), then the combined compliance
score is calculated as the conjunction of the policies and, at
block 1406, the policy aggregator 918 determines the sur-
prisal values for the conjunction of the policies. That is, the
combined compliance score for the collection of policies may
be calculated similar to calculating the compliance score for
apolicy including all the criteria of the collection of policies.
For example, the policy aggregator 918 may use Equation 9
above to calculate the maximum surprisal I(P,U ... P, 10)) of
the collection of policies ({P,, . . . P,}). The example policy
aggregator 918 may use Equation 9 above to also calculate the
remaining surprisal value (I(P,U . . . P, la)) of the computing
resource (a) against the collection of policies ({P,, ... P,}).In
some examples, the policy aggregator 918 may cause the
surprisal calculator 906 (FIG. 9) to calculate the surprisal
values.

At block 1408, the example policy aggregator 918 deter-
mines the information gain for the conjunction of the collec-
tion of policies. For example, the policy aggregator 918 may
use Equation 10 (FIG. 9) to calculate the information gain
(G(P,U . ..P,la)) for the collection of policies ({P;, ... P,})
enforced against the computing resource (a,). In some
examples, the policy aggregator 918 may cause the informa-
tion gain calculator 908 (FIG. 9) to calculate the information
gain.

At block 1410, the example policy aggregator 918 deter-
mines the combined compliance score for the computing
resource (a) over the collection of policies ({Py, . . . P,.}). For
example, the policy aggregator 918 may use Equation 11
above to normalize the information gain (G(P,U . . . P,la))

US 9,392,022 B2

39

using the maximum surprisal I(P,U . . . P,10)) for the con-
junction of the collection of policies ({P,, ... P, }) to calculate
the combined compliance score (B(P,U . . . P, la)) for the
computing resource (a) against the collection of policies
({Py, ... P, }). In some examples, the policy aggregator 918
may cause the example surprisal calculator 906 (FIG. 9) to
calculate the maximum surprisal I(P,U . . . P,10)) for the
conjunction of the policies ({P,, ... P, }).

At block 1412, the example policy aggregator 918 stores
the calculated combined compliance score (e.g., the policy-
aggregated compliance score) in the example scores database
314.

Returning to block 1404, if the example policy aggregator
918 determines the policies associated with the retrieved
compliance scores do not overlap (e.g., are independent poli-
cies sharing no criteria, or are to be treated as independent
policies, etc.), then, at block 1414, the policy aggregator 918
determines the combined surprisal value as the sum of the
surprisal values of all the policies in the collection of policies
({Py, ... P,}). For example, the policy aggregator 918 may
use Equation 12 above to calculate the maximum surprisal
(I(P10)) for each policy in the collection of policies ({P,, . . .
P_}). The example policy aggregator 918 may use Bquation
12 above to also calculate the surprisal value (I({P,, . . .
P,}1a)) for the computing resource against each of the poli-
cies in the collection of policies ({P;, . . . P,}). In some
examples, the policy aggregator 918 may cause the surprisal
calculator 906 to calculate the surprisal values.

At block 1416, the example policy aggregator 918 deter-
mines the information gain for the computing resource
against the collection of policies. For example, the policy
aggregator 918 may use Equation 13 above to calculate the
combined information gain (G({P,, . . . P,}-—a)). In some
examples, the policy aggregator 918 may cause the informa-
tion gain calculator 908 to calculate the information gain.

At block 1418, the example policy aggregator 918 deter-
mines the combined compliance score for the computing
resource over the collection of policies. For example, the
policy aggregator 918 may use Equation 14 above to normal-
ize the combined information gain (G({P,, . . . P, }la)) using
the summed maximum surprisal value (Z(I(P,10))) for the
collection of policies ({P,, . . . P,}) against the computing
resource (a). In some examples, the policy aggregator 918
may cause the example surprisal calculator 906 to calculate
the summed maximum surprisal value for the collection of
policies. Control then proceeds to block 1412, and the
example policy aggregator 918 stores the calculated com-
bined compliance score in the example scores database 314.
After block 1412, control returns to a calling function or
process such as the example program of FIG. 10, and the
example process of FIG. 14 ends.

II1. Identifying Priorities

Compliance policies apply to an inventory of computing
resources such as the computing resources of the example
virtual computing environment 100 of FIG. 1. Policies may
be defined by any organization, industry consortium, govern-
ment agency, company and/or any other entity or individual.
Some example policies that may be used with examples dis-
closed herein are provided by VMware, Inc., a Delaware
corporation, in the vSphere Hardening Guide (VHG) and by
the Defense Information Securities Agency (DISA) in the
form of Secure Technical Implementation Guides (STIGS).

An individual rule may be applicable to a subset of the
inventory, such as to ESXi hosts within a datacenter that
contains ESXi hosts, datastores and networking equipment.
Thus, as used herein, an asset class is the subset of an inven-
tory of computing resources satistying a scope condition

10

15

20

25

30

35

40

45

50

55

60

65

40

(e.g., satisfying a test performed by the scope tester 406 of
FIG. 4) of a rule within a policy. The set of computing
resources (or computing assets) that satisty the scope condi-
tion may sometimes be referred to as being within the scope
of the rule. For example, a first asset class may include all
ESXi hosts, a second asset class may include Virtual
Machines (VMs) with VMware Tools software installed, and
athird asset class may include ESX hosts that are members of
a cluster. In some examples, asset classes may overlap (e.g., a
resource may be a member of more than one asset class). The
size ofan asset class (e.g., the first asset class, the second asset
class, etc.) is the number of computing resources it contains.
For example, the VHG policy identifies 27 asset classes tested
by 150 rules.

To determine compliance of a computing resource that is
within the scope of a rule, the computing resource is tested
against a rule check condition (e.g., a test performed by the
check tester 408 of FIG. 4) of the rule. In some examples,
when a scope condition fails (e.g., the computing resource is
not within the scope of the rule), the rule corresponding to the
scope condition is considered inapplicable, a rule check con-
dition corresponding to the rule is not tested, and no defect is
generated. When the computing resource satisfies the scope
condition but fails the rule check condition of the rule, a
defectis generated. Thus, as used herein, a defect results (e.g.,
is generated) when a computing resource fails the rule check
condition corresponding to a rule. When a defect is generated,
the associated computing resource and rule, including the
scope condition results and the rule check condition, may be
logged. In the illustrated example, each defect has an associ-
ated repair action to correct the defect. For example, a repair
actionmay include installing an update or a software patch. In
some examples, an update or patch changes a configuration
setting such as setting an “enable copying” property of a
computing resource to Falseto satisfy a “disable copy” rule of
a policy.

Using prior systems to test large numbers of computing
resources using a significant number of rules, the resulting list
of defects (sometimes referred to as a “compliance report” or
“results”) may quickly become unmanageable. Fully auto-
mated remediation using such prior systems is often imprac-
tical. Examples disclosed herein are useful to overcome such
limitations of prior systems by ranking defects so that high-
priority defects may be prioritized or ranked relatively higher
to receive quicker attention and/or remediation. Thus, to pro-
cess defects resulting from computing resources that fail
policy rules, example methods and apparatus disclosed herein
prioritize defects according to their relevance to particular
users (e.g., system administrators), entities (e.g., organiza-
tions or businesses), etc.

Relevance, as used herein, may be represented as a priority
order determined by past (i.e., historical) repair actions per-
formed by the corresponding person, entity, etc. For example,
response times of how quickly users addressed and/or
repaired the same types of defects may be represented as
defect historical repair rates. A defect historical repair rate
indicates how quickly defects have been addressed by the user
(e.g., an entity, an IT department, an individual, etc.) in the
past. For example, a user may historically address (e.g.,
attempt to repair) defects associated with risk categories (e.g.,
security vulnerabilities) quicker than defects associated with
operational compliance categories. Examples disclosed
herein combine the defect historical repair rate with weights
learned from the defect repair history (e.g., alog of past repair
actions to repair defects) to map the defect historical repair
rate into a priority order that correlates with relevance. To this
end, example methods and apparatus disclosed herein include

US 9,392,022 B2

41

grouping defects into defect classes that share a common
repair action to correct the defect, generating an estimation
function based on previous user behavior and attentiveness at
maintaining a policy, estimating a priority order for the defect
classes using the estimation function, and ranking the defect
classes based on their estimated priority order.

FIG. 15 is a block diagram of an example implementation
of'the example results prioritizer 306 (FI1G. 3) of the example
compliance monitor 218 of FIGS. 2 and 3. In the illustrated
example of FIG. 15, the example results prioritizer 306
includes an example results grouper 1502, an example repairs
database 1504, an example defect class database 1510, an
example repair bias calculator 1520, an example repair effec-
tiveness calculator 1522 and an example priority estimator
1524. The example repairs database 1504 includes an
example repairs map 1506 that maps a defect to a repair action
used to correct the defect. The example repairs database 1504
also includes an example past repair actions database 1508
that stores a repair history (e.g., historical data) of past repair
actions. For example, the past repair actions database 1508
may identify when a defect was detected and when a repair
action to correct the defect was executed (or implemented) by
a user (e.g., a system administrator).

In the illustrated example of FIG. 15, the example results
prioritizer 306 includes the example results grouper 1502 to
aggregate defects into groupings (e.g., defect classes). When
the example results grouper 1502 receives a notification of a
defect (e.g., from the example compliance assessor 302 (FIG.
3), the example results database 312 (FIG. 3), etc.), the results
grouper 1502 uses the scope test information included in the
defect to identify an asset class that includes the computing
resource identified in the defect. In the illustrated example of
FIG. 15, the results grouper 1502 queries the repairs map
1506 for a repair action to correct the defect.

The example results grouper 1502 of FIG. 15 aggregates
defects into defect classes by grouping the defects sharing a
common asset class and having the same repair action.
Defects in the same defect class correspond to computing
resources of the same asset class. Thus, the repair action (e.g.,
installing a patch) associated with those defects is applicable
to and may be used for any computing resource in the asset
class. For example, the results grouper 1502 may group a first
defect into a defect class based on the first defect belonging to
a same asset class and corresponding to a same repair action
as a second defect in the defect class (e.g., two different
defects fixed by applying the same patch). In some examples,
instead of prioritizing individual resource (e.g., asset)
defects, the example results grouper 1502 enables prioritizing
defect classes, which facilitates using the same repair to pro-
cess (e.g., correct) the defects in the same defect class. The
size of a defect class is the number of defects contained in the
defect class. The extent of a defect class is representative of
the set of computing resources affected by the defects in the
defect class although a one defect to one resource mapping
may not be true for each instance (e.g., a resource may have
two defects in the same class). In examples disclosed herein,
defects are associated with a timestamp to identify different
times at which defects occur. After the example results grou-
per 1502 classifies a defect, the results grouper 1502 logs a
defect entry corresponding to the classified defect in the
defect class database 1510.

In the illustrated example of FIG. 15, the example defect
class database 1510 stores defect entries generated by the
example results grouper 1502 when classifying an assess-
ment result indicative of a compliance failure (e.g., a defect).
An example entry 1512, shown in FIG. 15, includes an
example defect identifier 1513, an example timestamp 1514,

20

25

35

40

45

50

55

60

65

42

an example asset identifier 1515, an example asset class iden-
tifier 1516, an example policy rule identifier 1517, an
example repair action identifier 1518, and an example defect
class identifier 1519. The example defect identifier 1513
identifies a defect (e.g., a defect reference number) that
resulted from an assessment. The example timestamp 1514
identifies the time at which the defect identified by the defect
identifier 1513 occurred. The example asset identifier 1515
identifies a computing resource that corresponds to the defect
identified by the defect identifier 1513. The example asset
class identifier 1516 identifies an asset class that includes the
computing resource identified by the asset identifier 1515.
The example policy rule identifier 1517 identifies the rule
failed by the computing resource identified by the asset iden-
tifier 1515. The example repair action identifier 1518 identi-
fies arepair action to correct the defect identified by the defect
identifier 1513. The example defect class identifier 1519
identifies a defect class that includes the defect identified by
the defect identifier 1513. The example Table 2 below
includes three defect entries (e.g., defects) categorized into
two example defect classes having corresponding policy
rules, asset classes and repair actions based on the VHG
policy discussed above.

TABLE 2
Defect Asset
Class Rule Class Repair
1 disable-console- VM with isolation.tools.copy.disable :=
copy Tools True
2 isolate-vum- vCenter Limit the connectivity between
proxy Update Manager and public
patch repositories.
2 isolate-vum- vCenter Limit the connectivity between
webserver Update Manager and public
patch repositories.

In the illustrated example of FIG. 15, the example results
prioritizer 306 includes the example repair bias calculator
1520 to determine a repair bias for preferring to repair defects
of one defect class over defects of another defect class. For
example, the example repair bias calculator 1520 may deter-
mine that a first type of defect class may contain defects
having shorter detect-to-repair times (e.g., the duration
between defect detection and defect repair and/or defect
repair initiation) than other defect classes. In some such
examples, the repair bias calculator 1520 may determine that
the user exhibits quicker response times for correcting defects
of'the first defect class than for correcting defects from other
defect classes.

The example repair bias calculator 1520 of FIG. 15 uses the
historical rate of repair (e.g., retrieved from the example past
repair actions database 1508) for each of the defect classes
based on historical repair actions to determine prioritizations
for correcting different defects from different defect classes.
That is, the example results prioritizer 306 may utilize the
defect class historical rate of repairs calculated by the
example repair bias calculator 1520 to identify defects asso-
ciated with a historical higher rate of repair (e.g., shorter
intervals between defect detection and defect repair) as
defects that a user responds to more quickly relative to other
defects from defect classes with lower rates of repair.

In the illustrated example of FIG. 15, the example repair
bias calculator 1520 determines the historical rate of repair
for a defect class based on previous assessment results from
the example results database 310 of FIG. 3, the example
defect class database 1510 and/or the example past repair
actions database 1508. For example, the repair bias calculator

US 9,392,022 B2

43

1520 may identify when a defect was detected and when a
repair action to correct the defect was executed (or imple-
mented) by a user from the example past repair actions data-
base 1508. Thus, the rate of repair may be representative of an
average historical detect-to-repair time between detecting a
same defect as a first defect and initiating repair of the same
defect. The techniques disclosed below in connection with
Equations 28 and 29 may be used by the example repair bias
calculator 1520 to calculate a repair bias for repairing defects
from one defect class over defects from another defect class.
For example, the repair bias calculator 1520 may use Equa-
tion 28 below to calculate the rate (y) at which a defect (in a
defect class (D,)) is repaired at a time (t).

y=min((ld =1 ICH0) Equation 28

In Bquation 28 above, an asset class (C)) is a subset of an
inventory of computing resources (e.g., assets) that satisfy a
scope condition for a policy rule, and the extent (A;) of a
defect class (D)) is representative of the set of computing
resources affected by the defects in a defect class (D;). The
fraction of an asset class (C)) affected by a defect class (D)) is
the ratio of the number of computing resources (J|A ||) affected
by the defect class (D)) to the number of computing resources
in the asset class (||C,[|). Thus, the example repair bias calcu-
lator 1520 uses Equation 28 above to calculate the change in
the fraction of an asset class affected by defects in a defect
class (D;) between assessment tests (e.g., between times (t-1,
). In some examples, the repair bias calculator 1520 may
then use Equation 29 below to calculate the normalized rate
(y;) at which defects in a defect class (D)) are repaired.

y=2p;/n, for n time cycles Equation 29

In Equation 29 above, the number of time cycles (n) is the
different times data points were calculated by Equation 28
above. Thus, the example repair bias calculator 1520 uses
Equation 29 above to calculate the average rate of repair for a
defect in a defect class (D)) (e.g., the normalized rate (e.g.,
detect-to-repair time per defect occurrence) at which defects
in a defect class (D,) are repaired) per step (e.g., between
assessment tests to generate the defects). In the illustrated
example, the average rate of repair (y,) is representative of the
repair bias of defect class (D). In some examples, the average
rate of repair (y;) may be used to determine relevance. For
example, a defect class with a relatively higher average rate of
repair (y,) (e.g., alower detect-to-repair time per defect occur-
rence) may correspond to a more relevant defect to repair to a
user, and, thus, may be prioritized or ranked relatively higher
than a defect class with a lower average rate of repair.

In the illustrated example of FIG. 15, the example results
prioritizer 306 includes the example repair effectiveness cal-
culator 1522 to calculate the effect that repairing a defect has
on the overall compliance of computing resources with a
policy. For example, correcting a defect by changing a prop-
erty state (or configuration setting) of a computing resource
affects all policies that include that computing resource in
their scope. This change is quantifiable, and the example
repair effectiveness calculator 1522 of FIG. 15 calculates an
average change in compliance score (e.g., a repair effective-
ness) for each policy resulting from repairs to a defect class.
The repair eftectiveness may then be used to prioritize certain
repairs over others. For example, a defect class with a rela-
tively higher repair effectiveness may correspond to a more
relevant defect to repair to a user, and, thus, may be prioritized
or ranked relatively higher than a defect class with a lower
repair effectiveness.

In the illustrated example of FIG. 15, the example repair
effectiveness calculator 1522 may retrieve compliance scores

10

15

20

25

30

35

40

45

50

55

60

65

44

from the example compliance measurer 304 (FIG. 3) and/or
the example scores database 314 (FIG. 3) that are indicative
of'a degree of compliance of a computing resource (e.g., an
asset) to a policy. For example, for each policy (P) and com-
puting resource (a), a compliance score of B(Pla) in the range
[-1,1]1s calculated, where 1 indicates total satisfaction of the
policy by the computing resource (a). As discussed in greater
detail above in connection with the example compliance mea-
surer 304, the compliance score may be normalized for
groups of computing resources and/or of a computing
resource at specific times. For example, the compliance score
(B(PH{a,, . . .,a,})) is the compliance score of a policy (P)
given the computing resources ({a,, . .. a,,}). The compliance
score of computing resources may be utilized to determine
the score of computing resource (a) on policy (P) at time (t)
(e.g., B(Pla")). In some such examples, an average change in
compliance score (e.g., score improvement) when repairs to
defects in a defect class (D)) are performed may be found
using Equations 30 and 31 below.

by = min(B(P; | A}) = B(P: | A1), 0) Eguation 30

2
o

i

Equation 31
b

, for n cycles

InEquation30 above, the change in compliance score (b,)
is the difference in compliance score between the extent of the
defect class at a first time (t) and at a previous time (t-1), the
compliance score (B(P,IA)") is the compliance score for the
policy (P,) given the extent of the defect class at the first time
(1), and the compliance score (B(PiIAj’"l)) is the compliance
score for the policy (P,) given the extent of the defect class at
the second time (t-1). In other words, the change in compli-
ance score (b,) is the amount that repairing a defect in a
defect class (D,) improves the compliance score on the policy
(P,) at time (t). The example repair effectiveness calculator
1522 may then use Equation 31 above to calculate the repair
effectiveness (b, ;) on a policy (P,) (e.g., the average (or nor-
malized) change in compliance score (e.g., score improve-
ment) on a policy (P,)) based on the average of the summed
total of the change in compliance scores given a change in the
extent (A)) (e.g., the set of affected computing resources) of a
defect class per step (e.g., between assessment tests).

In the illustrated example of FIG. 15, the example results
prioritizer 306 includes the example priority estimator 1524
to estimate a rank order for defect classes based on relevance
to corrective actions that are typically performed by a particu-
lar user (e.g., an entity, an IT group, an individual, and/or any
other type of user of content). Rather than retrieving explicit
preferences from a user (e.g., prompting the user to identify a
priority order), the example priority estimator 1524 uses
repair bias to estimate a rank order for the defect classes. That
is, historical repair data such as past repair actions and pre-
vious assessment results are utilized to determine which, if
any, defect class defects a user implicitly prefers to correct
relatively more quickly than defects from other defect
classes. In some such examples, the defect classes may be
ranked based on the average duration of a repair interval. For
example, a defect class with a high rate of repair (e.g., a short
detect-to-repair interval per defect occurrence) may be rep-
resentative of types of defects that a user prefers to correct
relatively more quickly than other defects. Thus, the example
priority estimator 1524 may estimate a priority order of defect
classes based on repair bias calculations retrieved from the

US 9,392,022 B2

45

example repair bias calculator 1520. As a result, the past
corrective behavior of the user in question is used to set the
priority during as opposed to express priority rankings input
by the user. In some examples, express priority rankings may
additionally or alternatively be entered. In some examples,
the priority estimator 1524 facilitates displaying the defect
class in rank order with a plurality of other defect classes
based on the estimated priority.

As discussed above, repairing a defect may affect compli-
ance scores of more than one policy that is enforced in the
computing environment. Thus, in some examples, the priority
estimator 1524 may estimate a rank order for defect classes
based on repair effectiveness of a repair in making a comput-
ing resource comply with (e.g., improve the compliance score
of) a policy. For example, the priority estimator 1524 may
compare the average score change step on a policy for the
different defect classes and rank-order the defect classes
accordingly. Thus, the example priority estimator 1524 may
estimate a priority order of defect classes based on repair
effectiveness calculations retrieved from the example repair
effectiveness calculator 1522.

In some examples, the example priority estimator 1524
leverages the rate of repair calculations with the repair effec-
tiveness calculations to estimate a priority order for the defect
classes. In some such examples, the example priority estima-
tor 1524 uses a learning algorithm (e.g., a machine-learning
algorithm) to generate an estimation function based on his-
torical data to estimate the priority order, which may then be
used to predict the rank-order for the defect classes.

The priority estimator 1524 of the illustrated example uses
a support vector regression (SVR) learning algorithm to gen-
erate an estimation function. Instead of soliciting training
examples from a user, the example priority estimator 1524
builds a training set based on historical data retrieved from,
for example, the results database 310 of FIG. 3, the example
defect class database 1510 and/or the example past user
repairs database 1518. As a result, the example SVR learning
algorithm learns to predict relevant priorities based on past
repair actions and previous assessment results. In some such
examples, the priority estimator 1524 may use Equations 32
and 33 below to build a training set for the example SVR
learning algorithm.

Si=(x/ "3 Equation 32

S=US/ Equation 33

In Equation 32 above, the training set vector (8 A for
defects in a defect class (D) at time (1) is calculated using the
rate of repair (y,”) for defects in the defect class (D)) at tlme ®
and a feature vector (x;/ Y. The feature vector (x Bis a
vector that combines the rate of repair calculations and the
repair effectiveness calculations for the time (t-1) into a
vector. For example, the feature vector (x,”~ Y may include the
average repair rate (y ."1) of defects in a defect class (D)), the
repair effectiveness (b, Yonpolicies P,in ({P,,...P F) the
assetclass (C)) correspondlng to the defect class (D), etc. The
example pnorlty estimator 1524 uses the tralmng set vector
(8, to build a training set (8", which may then be input into
the example SVR learning algorithm. As shown in Equation
33 above, the training set (S%) is the union of training set
vectors (S) for the defects in the defect class (D,) ata time (t).
Thus, the i tralmng set (S”) represents a collection of feature
vectors (x,*, y/) for each (j) and defect class (D,) at time (t).

The example priority estimator 1524 may then use the
training set (S°) as input into the SVR learning algorithm. For
example, the priority estimator 1524 may use Equation 34
below to generate a rank estimating function (f7).

F=SVR(S) Equation 34

10

15

20

25

30

35

40

45

50

55

60

65

46

In Equation 34 above, the rank estimating function (f*) is
output by the SVR learning algorithm at each time (t) and the
rank estimating function (f*) depends on the training set input
(S to the SVR learning algorithm. The example priority
estimator 1524 of the illustrated example uses the rank esti-
mating function (f*) to predict the next (e.g., at time t+1) rate
of repair (yj”l) based on the feature vector (x;”) for defects in
the defect class (D). For example, the priority estimator 1524
may use Equation 35 below to predict the next rate of repair

(yjt+ 1) .

¥ =i

In Equation 35 above, the predicted next rate of repair
(yj”l) is representative of an estimated relevance based on
past repair actions. In some examples, the predicted next rate
of repair is used as a priority for repairing defects of defect
class (D)) at time (1) (e.g., D,"). In some such examples, the
priority estimator 1524 may facilitate displaying the defect
classes in rank order based on the priorities for repairing the
defects of the respective defect classes.

In the illustrated example of FIG. 15, the priority estimator
1524 estimates relevance (e.g., priorities) of a defect based on
the repair history of the corresponding defect class. Addition-
ally, the calculated repair bias used by the priority estimator
1524 is user-agnostic. That is, a first user repair bias for
repairing, for example, performance compliance defects may
influence the repair priorities predicted for a second user (e.g.,
a user more interested in, for example, repairing security
vulnerability defects).

Accordingly, in some examples, the example priority esti-
mator 1524 may use user identifiers to personalize the esti-
mated relevance (yj”l) and prediction function (f*) calculated
in Equation 35 above. For example, when an entry is logged
in the past repair actions database 1508, the entry may also
include a user identifier to identify the user who initiated the
repair. In some such examples, the user identifier may be used
to personalize the repair bias for repairing defects (e.g., to
specific IT personnel, specific groups in an entity, etc.). For
example, the priority estimator 1524 may filter entries from
the example past repair actions database 1508 that do not
match the user identifier representative of the current user
prior to estimating a relevance (e.g., an estimated next rate of
repair) for a defect class such that only repairs by the corre-
sponding user affect the estimate. In some such examples, the
repair bias of the first user would not skew the predicted repair
priorities for a second user.

In some examples, the priority estimator 1524 adjusts pri-
oritization based on preferences of system administrators or
groups within an enterprise that may work on different por-
tion of the virtual computing environment 100 (FIG. 1) or on
the same portion at different times (e.g., day shift versus night
shift). For example, defect repairs made by one member of a
work-group may influence the expected rate of repair (and
hence defect class relevance) of other members of the work-
group. In some examples, the repair history may be weighted
based on hierarchy in a group. For example, the priority
estimator 1524 may give preference to (e.g., weigh heavier) a
repair history of a system administration department manager
than a system administrator in the department when estimat-
ing relevance.

In some examples, defect classes may influence other
defect classes. For example, different policy rules may share
criteria (e.g., tested configuration settings). As a result, a first
user preference for repairing a first defect class may be used
to influence the estimated next rate of repair (yj’“) ofarelated
second defect class that shares criteria.

Equation 35

US 9,392,022 B2

47

In some examples, a “filter bubble” may influence the
estimated relevance (e.g., the estimated next rate of repair) of
defect classes. A filter bubble may occur when recommenda-
tions are influenced (e.g., overwhelmingly influenced) by
past behavior and, thereby, biasing the user (or repairs) into
more of the same behavior. For example, the repair history for
a first defect class may be so robust that repairing subsequent
defects of the first defect class are continuously prioritized
over repairing other defect classes. As a result, the other
defect classes are unable to rise in priority, and the example
priority estimator 1524 continues to prioritize the first defect
class over the other defect classes, thereby continuing to bias
the user into repairing defects in the first defect class. In some
such examples, the inputs into the priority estimator 1524
may be periodically (e.g., once per week) and/or aperiodi-
cally (e.g., in response to a user request) modified based on
user preferences. For example, a user may select (e.g., via a
switch) to disable smart recommendations, rank defects con-
ventionally (e.g., not based on estimated relevance, etc.),
insert random results (e.g., into the training data), and/or
adjust the degrees of predictive power versus static scoring
via a graphical user interface element such as, for example, a
“volume knob.”

While an example manner of implementing the results
prioritizer 306 of FIG. 3 is illustrated in FIG. 15, one or more
of the elements, processes and/or devices illustrated in FIG.
15 may be combined, divided, re-arranged, omitted, elimi-
nated and/or implemented in any other way. Further, the
example results grouper 1502, the example repairs database
1504, the example repairs map 1506, the example past repair
actions database 1508, the example defect class database
1510, the example repair bias calculator 1520, the example
repair effectiveness calculator 1522, the example priority
estimator 1524, and/or, more generally, the example results
prioritizer 306 of FIG. 3 may be implemented by hardware,
software, firmware and/or any combination of hardware, soft-
ware and/or firmware. Thus, for example, any of the example
results grouper 1502, the example repairs database 1504, the
example repairs map 1506, the example past repair actions
database 1508, the example defect class database 1510, the
example repair bias calculator 1520, the example repair effec-
tiveness calculator 1522, the example priority estimator 1524
and/or, more generally, the example results prioritizer 306
could be implemented by one or more analog or digital
circuit(s), logic circuits, programmable processor(s), appli-
cation specific integrated circuit(s) (ASIC(s)), programmable
logic device(s) (PLD(s)) and/or field programmable logic
device(s) (FPLD(s)). When reading any of the apparatus or
system claims of this patent to cover a purely software and/or
firmware implementation, at least one of the example results
grouper 1502, the example repairs database 1504, the
example repairs map 1506, the example past repair actions
database 1508, the example defect class database 1510, the
example repair bias calculator 1520, the example repair effec-
tiveness calculator 1522 and/or the example priority estima-
tor 1524 is/are hereby expressly defined to include a tangible
computer readable storage device or storage disk such as a
memory, a digital versatile disk (DVD), a compact disk (CD),
a Blu-ray disk, etc. storing the software and/or firmware.
Further still, the example results prioritizer 306 of FIGS. 3
and 15 may include one or more elements, processes and/or
devices in addition to, or instead of, those illustrated in FIG.
15, and/or may include more than one of any or all of the
illustrated elements, processes and devices.

Flowcharts representative of example machine-readable
instructions for implementing the results prioritizer 306 of
FIGS. 3 and 15 are shown in FIGS. 16 and 17. In this example,

20

25

30

35

40

45

50

48

the machine-readable instructions comprise a program for
execution by a processor such as the processor 2412 shown in
the example processor platform 2400 discussed below in
connection with FIG. 24. The programs may be embodied in
software stored on a tangible computer readable storage
medium such as a CD-ROM, a floppy disk, a hard drive, a
digital versatile disk (DVD), a Blu-ray disk, or a memory
associated with the processor 2412, but the entire program
and/or parts thereof could alternatively be executed by a
device other than the processor 2412 and/or embodied in
firmware or dedicated hardware. Further, although the
example program is described with reference to the flow-
charts illustrated in FIGS. 16 and/or 17, many other methods
of implementing the example results prioritizer 306 may
alternatively be used. For example, the order of execution of
the blocks may be changed, and/or some of the blocks
described may be changed, eliminated, or combined.
Although the operations in the flow diagrams of FIGS. 16 and
17 are shown in seriatim, the examples of FIGS. 16 and 17
may additionally or alternatively be implemented so that one
ormore of the operations are performed in parallel with one or
more other ones of the operations.

The example method of FIG. 16 begins at block 1602 when
the example results grouper 1502 (FIG. 15) groups defects
into defect classes. In the illustrated examples, the results
grouper 1502 groups the defects into defect classes based on
a same asset class and a same repair action. For example, the
results grouper 1502 may determine an asset class for a defect
based on a non-compliant computing resource, and the results
grouper 1502 may use the example repairs map 1506 (FIG.
15) to determine a repair action for the defect. In some such
examples, the defect classes may be determined by the dif-
ferent combinations of asset classes and repair actions asso-
ciated with the defects.

At block 1604, the example priority estimator 1524 (FIG.
15) generates an estimation function of relevance (e.g., the
next rate of repair) for the defect classes. In the illustrated
example, the priority estimator 1524 determines the estima-
tion function of relevance based on historical data including
previous assessment results and/or past repair actions. An
example method that may be used to implement block 1604 is
described below in connection with FIG. 17. For example, the
priority estimator 1524 may use Equation 34, as discussed
above in connection with FIG. 15, to generate the estimation
function.

At block 1606, the priority estimator 1524 estimates a
priority order for the defect classes using the estimation func-
tion. For example, the priority estimator 1524 may estimate a
priority order for each of the defect classes listed in a backlog
of unrepaired defects. The priority estimator 1524 may then
use Equation 35, as discussed above in connection with FIG.
15, to estimate a priority order for the defect classes with
unrepaired defects and then determine a priority order for the
defect classes based on their estimated priority order.

Atblock 1608, the example results prioritizer 306 (FIGS. 3
and 15) determines whether a repair action is received. For
example, the results prioritizer 306 may pause prioritizing
defect classes until an action is taken against the ordered
defect class. For example, the results prioritizer 306 may
check whether a response to the estimated priority order is
received from a user. If no repair action is received at block
1608, then, at block 1610, the results prioritizer 306 deter-
mines whether a timeout occurs. If no timeout occurs at block
1610, then control returns to block 1608 to determine whether
a repair action is received. Otherwise, if a timeout does occur
at block 1610, then control proceeds to block 1614 to deter-
mine whether to continue prioritizing defect classes.

US 9,392,022 B2

49

Returning back to block 1608, if the results prioritizer 306
determines that a repair action was received, then, at block
1612, the results prioritizer 306 updates the repair rates of
defect classes. For example, the results prioritizer 306 may
update the repair rates of the defect classes stored in the past
repair actions database 1508 (FIG. 15) based on the repair
action(s) taken at block 1608. Control then proceeds to block
1614 to determine whether to continue prioritizing defect
classes.

At block 1614, the example results prioritizer 306 deter-
mines whether to continue prioritizing defect classes. For
example, a process or application using the results prioritizer
306 may be stopped or power may be removed from the
results prioritizer 306 (e.g., through a system shutdown
event). If the results prioritizer 306 determines to stop priori-
tizing defect classes, the example process of FIG. 16 ends.
Otherwise, control returns to block 1602 to group defects into
defect classes.

The example method of FIG. 17 may be used to generate an
estimation function of relevance based on historical data. The
example method of FIG. 17 may be used to implement block
1604 of FIG. 16. Initially, at block 1702, the example repair
bias calculator 1520 (FIG. 15) determines a repair rate for
repairing defects in a defect class based on previous assess-
ment results and/or past repair actions. For example, the
repair bias calculator 1520 may use Equation 28, as discussed
above in connection with FIG. 15, to calculate a change in the
fraction of computing resources affected by defects in a
defect class (D,) at a time (t). The example repair bias calcu-
lator 1520 may then use Equation 29, as discussed above in
connection with FIG. 15, to calculate an average rate of repair
(y,) at which defects in a defect class (D)) are repaired based
on the sum of the change in the number of computing
resources affected by the defect class (D;) over the number of
cycles (n).

At block 1704, the example repair effectiveness calculator
1522 (FIG. 15) determines repair effectiveness of repairing a
defect for a policy enforced in a computing environment. For
example, the repair effectiveness calculator 1522 may use
Equation 30, as discussed above in connection with FIG. 15,
to calculate a change in compliance score given the extent of
the defect class at a first time and at a second time. The
example repair effectiveness calculator 1522 may then use
Equation 31, as discussed above in connection with FIG. 15,
to calculate a repair effectiveness (b;;) (e.g., an average
change in compliance score) for each policy enforced in the
computing environment resulting from repairs to defects in a
defect class (D).

At block 1706, the example priority estimator 1524 gener-
ates an estimation function for unrepaired defects. An
example technique of generating the estimation function
includes training a learning algorithm (e.g., machine-learning
algorithm) based on repair rates (e.g., the repair rates deter-
mined at block 1702) and repair effectiveness (e.g., the repair
effectiveness determined at block 1704). For example, the
priority estimator 1524 may use Equations 32 and 33, as
discussed above in connection with FIG. 15, to build a train-
ing set including the repair rates from the example repair bias
calculator 1520 and the repair effectiveness from the repair
effectiveness calculator 1522. In some examples, the priority
estimator 1524 may then use Equation 34, as discussed above
in connection with FIG. 15, to generate an estimation func-
tion for the unrepaired defects based on the output of the
training algorithm (e.g., a support vector regression (SVR)
algorithm).

At block 1708, the example priority estimator 1524 deter-
mines whether to generate another estimation function. For

10

15

20

25

30

35

40

45

50

55

60

65

50

example, the priority estimator 1524 may receive notification
that the example past repair actions database 1508 (FIG. 15)
was updated with additional past repair actions. If the priority
estimator 1524 determines there is another estimation func-
tion to generate, for example, based on the additional past
repair actions, control returns to block 1702. Otherwise, if, at
block 1708, the priority estimator 1524 determines not to
generate another estimation function, control then returns to a
calling function or process such as the example program of
FIG. 16, and the example process of FIG. 17 ends.

IV. Reporting Results

The example reporter 318 of FIG. 3 may retrieve user
information stored in the example compliance database 308
(FIG. 3) to generate reports for a user (e.g., a system admin-
istrator). Reports may be helpful in determining the compli-
ance posture of a computing resource and/or the virtual com-
puting environment 100 (FIG. 1). The example reporter 318
of FIG. 3 generates different reports based on different user
selections. For example, the reporter 318 may retrieve assess-
ment results stored in the results database 312 (FIG. 3) and
generate a report identifying the assessment results for one or
more of computing resource(s) (e.g., assets), a policy (or
policies), the virtual computing environment 100, etc. In
some examples, the reporter 318 retrieves compliance scores
from the scores database 314 (FIG. 3) and generates a report
identifying the compliance scores for one or more of a com-
puting resource(s), a policy (or policies), a range of time, a set
of designated times, the virtual computing environment 100,
etc. In some other examples, the reporter 318 retrieves rank-
ings from the priority order database 316 (FIG. 3) and gen-
erates a report identifying the ranked order of the assessment
results.

FIGS. 18-23 illustrate example interfaces generated by the
example reporter 318. FIG. 18 illustrates an example inter-
face 1800 displaying a real-time compliance summary for a
computing environment (e.g., the example virtual computing
environment 100). The example interface 1800 displays a
compliance score 1802, a finance group identifier 1804, a
policy identifier 1806, and a compliance timeline 1808. The
example reporter 318 may retrieve the compliance score 1802
from the example scores database 314. The example reporter
318 may retrieve the group identifier 1804 from the example
core services controller 216 (FIG. 2) (e.g., via aresources and
virtual machine inventory management application). In the
illustrated example, the group identifier 1804 corresponds to
a group of computing resources associated with a finance
department. The example reporter 318 may retrieve a policy
enforced in the finance group of computing resources from
the example policy database 310 (FIG. 3) and display the
policy identifier 1806 corresponding to the retrieved policy.
The example reporter 318 may retrieve previous compliance
scores for the finance group of computing resources to gen-
erate the compliance timeline 1808.

FIG. 19 illustrates an example interface 1900 displaying a
compliance summary of a computing resource’s compliance
with a policy. The example reporter 318 may retrieve an
inventory list 1902 from the example compliance database
308 (FIG. 3) to display to a user. In the illustrated example, a
computing resource or resource group 1904 (CompR-
sc.eng.vmmware.com) from the inventory list 1902 is selected,
and the policy 1906 (e.g., the vSphere 5 Hardening Guide) is
enforced on the computing resource 1904. In the illustrated
example, the population summary 1908 corresponds to the
group of computing resources included in the selected com-
puting resource 1904. Thus, the reporter 318 may retrieve
assessment results from the example results database 312
(FIG. 3) that are related to or under control of the selected

US 9,392,022 B2

51

computing resource 1904. In the illustrated example of FIG.
19, the population summary 1908 provides the number of
compliance successes 1910 (e.g., four), the number of com-
pliance critical-failures 1912 (e.g., 669), and the number of
compliance warnings 1914 (e.g., three). In some examples, a
compliance critical-failure 1912 may indicate that a comput-
ing resource is out-of-compliance with a critical rule. For
example, a compliance critical-failure may be indicative of a
security vulnerability with the selected computing resource.
In some examples, a compliance warning 1914 may be
indicative of a computing resource that is out-of-compliance
with a non-critical rule (or non-essential rule).

In some examples, the compliance status (e.g., the compli-
ance success, the compliance critical-failure and/or the com-
pliance warning) may correspond to compliance score thresh-
old percentages for the computing resource. For example, a
compliance score between 90% and 100% may correspond to
a compliance success, a compliance score between 70% and
89% may correspond to a compliance warning, and a com-
pliance score between 0% and 69% (or less than 70%) may
correspond to a compliance critical-failure. Thus, in some
examples, the number of compliance successes 1910, the
number of compliance critical-failures 1912, and the number
of compliance warnings 1914 correspond to the number of
computing resources within the group of computing
resources included in the selected computing resource 1904
in which the compliance score was within one of the compli-
ance score threshold percentages. In some other examples,
the number of compliance successes 1910, the number of
compliance critical failures 1912, and the number of compli-
ance warnings 1914 may correspond to the compliance score
of one computing resource assessed at different times
({t,, . . . t,,}). In some other examples, the number of com-
pliance successes 1910, the number of compliance critical
failures 1912, and the number of compliance warnings 1914
may correspond to the compliance score of one computing
resource assessed over a period of time [t;, t,,]. In some other
examples, the number of compliance successes 1910, the
number of compliance critical-failures 1912, and the number
of compliance warnings 1914 may correspond to the compli-
ance score of the different rules that are imposed on the
selected computing resource 1904. In some examples, the
threshold percentages may be modified by a user.

FIG. 20 illustrates an example interface 2000 displaying a
compliance summary for computing resources related to a
selected computing resource. The example interface 2000
includes the inventory list 2002 and identifies the selected
computing resource 2004 (CompRsc.eng.vmware.com). In
the illustrated example, the reporter 318 (FIG. 3) retrieves
assessment results from the example results database 312
(FIG. 3) and/or compliance scores from the example scores
database 314 (FIG. 3) that are related to the selected comput-
ing resource 2004. The example interface 2000 displays the
compliance scores for a group of virtual machines 2006
included in the selected computing resource 2004. An
example list of virtual machines 2006 and the corresponding
compliance scores is displayed in the interface panel 2008.

FIG. 21 illustrates an example interface 2100 displaying a
combined population compliance summary for a group of
computing resources related to a selected computing resource
and a compliance summary for the selected computing
resource. The example interface 2100 of FIG. 21 includes an
inventory list 2102, the selected computing resource 2104
(CompRsc.eng.vmware.com), and the policy 2106 (e.g., the
vSphere 5 Hardening Guide) that is enforced on the comput-
ing resource 2104. The example interface 2100 also includes
the population summary 2108 corresponding to the group of

35

40

45

55

52

computing resources included in the selected computing
resource 2104 and the corresponding number of compliance
successes 2110 (e.g., two), number of compliance critical-
failures 2112 (e.g., 58), and number of compliance warnings
2114 (e.g., one). The example interface 2100 also includes
interface panel 2116 to display a compliance summary forthe
selected computing resource 2104. In the illustrated example
of FIG. 21, the interface panel 2116 includes indicators for
compliance successes 2118 and for compliance failures 2120
for corresponding ones of the rules 2122. The example inter-
face panel 2116 also includes a severity indicator 2124 to
indicate the level of severity (e.g., a compliance critical-
failure 1912 (FIG. 19), and/or a compliance warning 1914
(F1G.19), etc.) when the selected computing resource 2104 is
out-of-compliance with one of the rules 2122.

FIG. 22 illustrates an example interface 2200 displaying
detailed compliance information for a selected computing
resource. The example interface 2200 displays an inventory
list 2202, the selected computing resource 2204 (BobH2k8),
and a “Details” tab 2206 that is selected. The example inter-
face 2200 also includes a detailed compliance timeline 2208.
To generate the detailed compliance timeline 2208, the
reporter 318 (FIG. 3) may retrieve compliance scores from
the example scores database 314 (FIG. 3). As discussed in
greater detail above in connection with the example compli-
ance assessor 302 and the example compliance measurer 304
(FIG. 3), the compliance assessor 302 performs compliance
assessments when an event (e.g., a configuration change) is
detected (e.g., the compliance assessor 302 is event-driven),
and the compliance measurer 304 calculates compliance
scores when an assessment result changes. Thus, the compli-
ance scores may be displayed in the detailed compliance
timeline 2208 as a trace 2210 (e.g., a stream of continuous
compliance measurements). In the illustrated example, the
trace 2210 is representative of the compliance score of the
selected computing resource 2204 over time. In addition,
marks 2212 located on the trace 2210 are indicative of when
compliance measurements were performed.

The example interface 2200 also includes example inter-
face panel 2214 to display historical compliance measure-
ments in a list. Accordingly, the example interface panel 2214
includes compliance state (or status) indicators 2216 and
severity indicators 2218 for the corresponding rules 2220.
The example interface panel 2214 also includes the policy
2222 (sometimes referred to as “standard”) to which each of
the rules 2220 correspond and a timestamp 2224 indicative of
when the compliance measurement was made. The example
interface panel 2214 includes a change indicator 2226 to
indicate when a change in compliance for a rule 2220 is
measured. In the illustrated example, the rule 2230 is selected
and a popup panel 2228 displays detailed information regard-
ing the compliance assessment. In the illustrated example, the
reporter 318 retrieves detailed information regarding the rule
from the example policy database 310 (FIG. 3) (e.g., the
“standard” (e.g., the policy), the “rule,” the “severity” level,
the check “test” and the “expected value” (e.g., the check
state). The example reporter 318 may retrieve the “found”
state (e.g., the computing resource state) from the example
results database 312 (FIG. 3).

FIG. 23 illustrates an example interface 2300 to display
assessment results for a policy. For example, the reporter 318
(FIG. 3) may retrieve assessment results from the example
results database 312 (FIG. 3). In the illustrated example, the
interface 2300 includes a details panel 2302 providing assess-
ment results for compliance of the computing resource 2304
(e.g., the Bronze Datacenter) with the policy 2306 (e.g., the
VM Hardening Guide 5.1). The example details panel 2302

US 9,392,022 B2

53

includes a timeline 2308 and a results list 2310. In the illus-
trated example, the example timeline 2308 projects compli-
ance measurements 2312 over a thirty day period. For
example, the reporter 318 may process compliance scores
retrieved from the example scores database 314 (FIG. 3)
and/or the example score comparator 920 (FIG. 9) to identify
trends in compliance measurements. The example reporter
318 may then predict compliance measurements 2312 over a
time period of interest. In the illustrated example of FI1G. 23,
the results list 2310 is a filtered list of assessment results. For
example, the results list 2310 only includes assessment
results indicative of compliance failures 2314 for rules with a
critical severity level 2316. Thus, the example results list
2310 may display a combination of assessment results corre-
sponding to a compliance state 2314 that is selected (e.g.,
compliance failures, compliance successes, compliance
unknown, and/or compliance inapplicable) and a rule severity
level (e.g., critical, non-critical, etc.).

As mentioned above, the example processes of FIGS. 4, 6,
7,10-14, 16 and 17 may be implemented using coded instruc-
tions (e.g., computer and/or machine-readable instructions)
stored on a tangible computer readable storage medium such
as a hard disk drive, a flash memory, a read-only memory
(ROM), a compact disk (CD), a digital versatile disk (DVD),
a cache, a random-access memory (RAM) and/or any other
storage device or storage disk in which information is stored
for any duration (e.g., for extended time periods, perma-
nently, for brief instances, for temporarily buffering, and/or
for caching of the information). As used herein, the term
tangible computer readable storage medium is expressly
defined to include any type of computer readable storage
device and/or storage disk and to exclude propagating signals
and transmission media. As used herein, “tangible computer
readable storage medium” and “tangible machine-readable
storage medium” are used interchangeably. Additionally or
alternatively, the example processes of FIGS. 4, 6, 7, 10-14,
16 and 17 may be implemented using coded instructions (e.g.,
computer and/or machine-readable instructions) stored on a
non-transitory computer and/or machine-readable medium
such as a hard disk drive, a flash memory, a read-only
memory, a compact disk, a digital versatile disk, a cache, a
random-access memory and/or any other storage device or
storage disk in which information is stored for any duration
(e.g., for extended time periods, permanently, for brief
instances, for temporarily buffering, and/or for caching of the
information). As used herein, the term non-transitory com-
puter readable medium is expressly defined to include any
type of computer readable storage device and/or storage disk
and to exclude propagating signals and transmission media.
As used herein, when the phrase “at least” is used as the
transitionterm in a preamble of a claim, it is open-ended in the
same manner as the term “comprising” is open ended.

FIG. 24 is a block diagram of an example processor plat-
form 2400 capable of executing the instructions to implement
the compliance monitor 218 of FIGS. 2 and/or 3, the compli-
ance assessor 302 of FIGS. 3 and/or 5, the compliance mea-
surer 304 of FIGS. 3 and/or 9, and/or the results prioritizer
306 of FIGS. 3 and/or 15. The processor platform 2400 can
be, for example, a server or any other type of computing
device.

The processor platform 2400 of the illustrated example
includes a processor 2412. The processor 2412 of the illus-
trated example is hardware (e.g., a semi-conductor based
logic circuit). For example, the processor 2412 can be imple-
mented by one or more integrated circuits, logic circuits,
microprocessors or controllers from any desired family or
manufacturer.

10

15

20

25

30

35

40

45

50

55

60

65

54

The processor 2412 of the illustrated example includes a
local memory 2413 (e.g., a cache). The processor 2412 of the
illustrated example is in communication with a main memory
including a volatile memory 2414 and a non-volatile memory
2416 via a bus 2418. The volatile memory 2414 may be
implemented by Synchronous Dynamic Random Access
Memory (SDRAM), Dynamic Random Access Memory
(DRAM), RAMBUS Dynamic Random Access Memory
(RDRAM) and/or any other type of random access memory
device. The non-volatile memory 2416 may be implemented
by flash memory and/or any other desired type of memory
device. Access to the main memory 2414, 2416 is controlled
by a memory controller.

The processor platform 2400 of the illustrated example
also includes an interface circuit 2420. The interface circuit
2420 may be implemented by any type of interface standard,
such as an Ethernet interface, a universal serial bus (USB),
and/or a PCI express interface.

In the illustrated example, one or more input devices 2422
are connected to the interface circuit 2420. The input
device(s) 2422 permit(s) a user to enter data and commands
into the processor 2412. The input device(s) can be imple-
mented by, for example, an audio sensor, a microphone, a
camera (still or video), a keyboard, a button, a mouse, a
touchscreen, a track-pad, a trackball, isopoint and/or a voice
recognition system.

One or more output devices 2424 are also connected to the
interface circuit 2420 of the illustrated example. The output
devices 2424 can be implemented, for example, by display
devices (e.g., a light emitting diode (LED), an organic light
emitting diode (OLED), a liquid crystal display, a cathode ray
tube display (CRT), a touchscreen, a tactile output device, a
light emitting diode (LED), a printer and/or speakers). The
interface circuit 2420 of the illustrated example, thus, typi-
cally includes a graphics driver card, a graphics driver chip or
a graphics driver processor.

The interface circuit 2420 of the illustrated example also
includes a communication device such as a transmitter, a
receiver, a transceiver, a modem and/or network interface
card to facilitate exchange of data with external machines
(e.g., computing devices of any kind) via a network 2426
(e.g., an Ethernet connection, a digital subscriber line (DSL),
a telephone line, coaxial cable, a cellular telephone system,
etc.).

The processor platform 2400 of the illustrated example
also includes one or more mass storage devices 2428 for
storing software and/or data. Examples of such mass storage
devices 2428 include floppy disk drives, hard drive disks,
compact disk drives, Blu-ray disk drives, RAID systems, and
digital versatile disk (DVD) drives.

The coded instructions 2432 of FIGS. 4, 6, 7, 10-14, 16
and/or 17 may be stored in the mass storage device 2428, in
the volatile memory 2414, in the non-volatile memory 2416,
and/or on a removable tangible computer readable storage
medium such as a CD or DVD.

From the foregoing, it will be appreciated that above dis-
closed methods, apparatus and articles of manufacture enable
calculating compliance scores of computing resources in a
computing environment based on assessment results to mea-
sure adherence of the computing resources to a policy.

Although certain example methods, apparatus and articles
of manufacture have been disclosed herein, the scope of cov-
erage of'this patent is not limited thereto. On the contrary, this
patent covers all methods, apparatus and articles of manufac-
ture fairly falling within the scope of the claims of this patent.

US 9,392,022 B2

5§

What is claimed is:

1. A method to measure compliance of policies to be
enforced in a computing environment, the method compris-
ing:

determining, with a processor, a maximum surprisal value

of'a policy to be enforced on a computing resource in the
computing environment, the policy defining a state asso-
ciated with a compliance position for the computing
resource, the maximum surprisal value (1) correspond-
ing to a probability of the computing resource being
in-compliance with the policy based on conditions of the
policy and (2) determined without testing the computing
resource with respect to the policy;

determining, with the processor, a current surprisal value

of the computing resource with respect to the policy
based on knowledge of at least one condition of the
policy being at least one of satisfied by or inapplicable to
the computing resource, the determining of the current
surprisal value based on surprisal analysis techniques;
determining a compliance score of the computing resource
with respect to the policy based on the maximum sur-
prisal value of the policy and the current surprisal value
of the computing resource with respect to the policy;
identifying a priority for determining when to perform a
repair action to correct a defect associated with the com-
puting resource based on the compliance score, the pri-
ority associated with a repair action to correct the defect;
and
performing the repair action at a scheduled time, the sched-
uled time based on the compliance score.
2. A method as defined in claim 1, wherein the determining
of the current surprisal value of the computing resource with
respectto the policy further includes determining compliance
of'the computing resource with respect to the policy based on
a current state of the computing resource identifying condi-
tions of the policy that are currently satisfied.
3. A method as defined in claim 1, wherein the determining
of the compliance score of the computing resource to the
policy based on the maximum surprisal value of the policy
and the current surprisal value of the computing resource with
respect to the policy further includes determining a ratio
between (a) a difference between the maximum surprisal
value of the policy and the current surprisal value of the
computing resource with respect to the policy and (b) the
maximum surprisal value of the policy.
4. A method as defined in claim 1, further including deter-
mining a compliance status of the computing resource with
respect to the policy based on a threshold percentage of the
compliance score.
5. A method as defined in claim 1, wherein the policy
conditions defined by the policy include a Boolean-valued
function.
6. A method as defined in claim 1, wherein the determining
of the compliance score further includes:
adjusting the current surprisal value of the computing
resource in response to determining a second condition
of'the policy is satisfied by the computing resource; and

updating the compliance score for the computing resource
based on the adjusted current surprisal value and the
maximum surprisal value of the policy.

7. A method as defined in claim 6, wherein the current
surprisal value is updated in response to a change in a state of
the computing resource.

8. A method as defined in claim 1, wherein the policy is a
first policy, the compliance score is a first compliance score,

20

25

30

35

40

45

55

65

56

the maximum surprisal value is a first maximum surprisal
value, the current surprisal value is a first current surprisal
value, and further including:

determining a policy-aggregated compliance score repre-

senting compliance of the computing resource with
respect to the first policy and a second policy, the policy-
aggregated compliance score including a mathematical
combination of the first compliance score and a second
compliance score of the computing resource, the second
compliance score based on a ratio between (a) a differ-
ence between a second maximum surprisal value for the
second policy and a second current surprisal value of the
computing resource with respect to the second policy
and (b) the second maximum surprisal value of the sec-
ond policy.

9. A method as defined in claim 8, wherein the mathemati-
cal combination further includes determining a ratio between
(a) a conjunction of the first current surprisal value and the
second current surprisal value and (b) a conjunction of the
first maximum surprisal value of the first policy and the
second maximum surprisal value of the second policy.

10. A method as defined in claim 8, wherein the mathemati-
cal combination further includes determining a ratio between
(a) a summation of the first current surprisal value and the
second current surprisal value and (b) a summation of the first
maximum surprisal value of the first policy and the second
maximum surprisal value of the second policy.

11. A method as defined in claim 8, further including deter-
mining, with the processor, the second current surprisal value
of the computing resource with respect to the second policy
based on knowledge of at least one condition of the second
policy being at least one of satisfied by or inapplicable to the
computing resource.

12. A method as defined in claim 1, wherein the policy is a
first policy, the computing resource is a first computing
resource, the compliance score is a first compliance score, the
maximum surprisal value is a first maximum surprisal value,
the current surprisal value is a first current surprisal value, the
first compliance score of the first computing resource with
respect to the first policy is determined at a first time, and
further including:

determining a temporally-aggregated compliance score

representing compliance of the first computing resource
with respect to the first policy at the first time and at a
second time, the temporally-aggregated compliance
score of the first computing resource including a math-
ematical combination of the first compliance score
determined at the first time and a second compliance
score of the computing resource determined at the sec-
ond time, the second compliance score determined at the
second time based on a ratio between (a) a difference
between the first maximum surprisal value of the first
policy and a second current surprisal value of the com-
puting resource with respect to the policy determined at
the second time and (b) the first maximum surprisal
value of the first policy.

13. A method as defined in claim 12, wherein the math-
ematical combination includes averaging the first compliance
score and the second compliance score.

14. A method as defined in claim 12, wherein the math-
ematical combination includes averaging respective comput-
ing scores of the first computing resource over an interval
between the first time and the second time.

15. A method as defined in claim 1, wherein the policy is a
first policy, the computing resource is a first computing
resource, the compliance score is a first compliance score, the

US 9,392,022 B2

57

maximum surprisal value is a first maximum surprisal value,
the current surprisal value is a first current surprisal value, and
further including:

determining a group-aggregated compliance score repre-

senting compliance of the first computing resource and a
second computing resource with respect to the first
policy, the group-aggregated compliance score includ-
ing a mathematical combination of the first compliance
score of the first computing resource and a second com-
pliance score of the second computing resource, the
second compliance score based on a ratio between (a) a
difference between the first maximum surprisal value for
the first policy and a second current surprisal value of the
second computing resource with respect to the first
policy and (b) the first maximum surprisal value of the
first policy.

16. A method as defined in claim 1, wherein the compliance
score is a first compliance score, the computing resource is a
first computing resource, the policy is a first policy, the maxi-
mum surprisal value is a first maximum surprisal value, the
current surprisal value is a first current surprisal value, and
further including:

determining a temporally-aggregated compliance score

representing compliance of the first computing resource
with respect to the first policy determined at a first time
and a second compliance score of the first computing
resource with respect to the first policy determined at a
second time, the temporally-aggregated compliance
score of the first computing resource including a first
mathematical combination of the first compliance score
and the second compliance score;

determining a group-aggregated compliance score repre-

senting compliance of the first computing resource and a
second computing resource with respect to the first
policy, the group-aggregated compliance score includ-
ing a second mathematical combination of'the first com-
pliance score of the first computing resource and a third
compliance score of the second computing resource
with respect to the first policy;

determining a policy-aggregated compliance score repre-

senting compliance of the first computing resource with
respect to the first policy and a second policy, the policy-
aggregated compliance score including a third math-
ematical combination of the first compliance score with
respect to the first policy and a fourth compliance score
of the computing resource with respect to the second
policy; and

determining a combined compliance score representing

compliance of the first computing resource and the sec-
ond computing resource with respect to the first policy
and the second policy over the first time and the second
time, the combined compliance score including a fourth
mathematical combination of the temporally-aggre-
gated compliance score, the group-aggregated compli-
ance and the policy-aggregated compliance score.

17. A method to measure compliance of a computing
resource with policies to be enforced in a computing environ-
ment, the method comprising:

determining, by executing an instruction with a processor,

a maximum surprisal value of a policy to be enforced on
the computing resource, the policy defining a state asso-
ciated with a compliant position for the computing
resource, the maximum surprisal value (1) representing
a probability of the computing resource being in-com-
pliance with the policy based on conditions of the policy
and (2) determined without knowledge of a current state

10

15

20

25

30

35

40

45

50

55

60

65

58

of the computing resource, the determining of the maxi-
mum surprisal value based on surprisal analysis tech-
niques;

repeatedly determining, by executing instructions with the
processor, compliance of the computing resource with
respect to the policy based on states of the computing
resource over time to generate a plurality of surprisal
values with respect to the policy over time;

normalizing, by executing an instruction with the proces-
sor, the plurality of surprisal values based on the maxi-
mum surprisal value;

identifying, by executing an instruction with the processor,
a trend of compliance of the computing resource with
respect to the policy over time based on the normalized
plurality of surprisal values;

identifying a priority for determining, by executing an
instruction with the processor, when to perform a repair
action to correct a defect associated with the computing
resource based on the trend of compliance, the priority
associated with a repair action to correct the defect; and

performing the repair action at a scheduled time, the sched-
uled time based on the trend of compliance.

18. An apparatus to measure compliance of a computing
resource with respect to policies to be enforced in a comput-
ing environment, the apparatus comprising:

a surprisal calculator to determine a first maximum sur-
prisal value of a first policy to be enforced on the com-
puting resource, the first policy defining a first state
associated with a first compliant position for the com-
puting resource, the first maximum surprisal value to
represent a probability of the computing resource being
in-compliance with the first policy based on conditions
of the policy and determined without knowledge of a
current state of the computing resource, and the surprisal
calculator to determine a second maximum surprisal
value of a second policy be enforced on the computing
resource, the second policy defining a second state asso-
ciated with a second compliance position for the com-
puting resource, the second maximum surprisal value to
represent a probability of the computing resource being
in-compliance with the second policy without knowl-
edge of the current state of the computing resource, the
surprisal calculator to determine the first maximum sur-
prisal value and the second maximum surprisal value
based on surprisal analysis techniques;

an information gain calculator to determine a first informa-
tion gain value representative of compliance of the com-
puting resource with respect to the first policy, the first
information gain value including a difference between
the first maximum surprisal value and a first current
surprisal value of the computing resources correspond-
ing to a current state of the computing resource with
respect to the first policy, the information gain calculator
to determine a second information gain value represen-
tative of compliance of the computing resource with
respect to the second policy, the second information gain
value including a difference between the second maxi-
mum surprisal value and a second current surprisal value
of the computing resources corresponding to a current
state of the computing resource with respect to the sec-
ond policy;

a scorer to normalize the first information gain value based
on the first maximum surprisal value, the scorer to nor-
malize the second information gain value based on the
second maximum surprisal value;

a policy aggregator to combine the first normalized infor-
mation gain value and the second normalized informa-

US 9,392,022 B2

59

tion gain value to identify a compliance of the comput-
ing resource with respect to the first and second policies;
and
a priority estimator to identify a repair action priority for a
first defect relative to a second defect associated with the
computing resource based on the identified compliance.
19. A tangible computer readable storage medium com-
prising instructions that, when executed, cause a processor to
at least:
determine a first maximum surprisal value of a policy to be
enforced on a first computing resource and a second
computing resource, the policy defining a state associ-
ated with a compliant position for the first computing
resource and the second computing resource, the first
maximum surprisal value representing (1) a probability
of at least one of the first and second computing
resources being in-compliance with the policy based on
conditions of the policy and (2) determined without
knowledge of a current state of the at least one of the first
and second computing resources, the instructions to
cause the processor to determine the first maximum
surprisal value based on surprisal analysis techniques;
determine compliance of'the first computing resource with
respect to the policy based on a current state of the first
computing resource and the first maximum surprisal

10

15

20

60

value to generate a first information gain value of the first
computing resource with respect to the policy;
normalize the first information gain value based on the first
maximum surprisal value to generate a first normalized
compliance score;
determine compliance of the second computing resource
with respect to the policy based on a current state of the
second computing resource and the first maximum sur-
prisal value to generate a second information gain value
of the second computing resource with respect to the
policy;
normalize the second information gain value based on the
first maximum surprisal value to generate a second nor-
malized compliance score;
combine the first normalized compliance score and the sec-
ond normalized compliance score to identify a compliance of
the first and second computing resources with respect to the
policy;
identify a priority associated with determine when to per-
form a repair action to correct a defect associated with
the first computing resource or the second computing
resource based on the identified compliance, performing
of the repair action to correct the defect; and
initiate performance of the repair action at a scheduled
time, the scheduled time based on the compliance.

#* #* #* #* #*

